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KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE

BASED ON LINEAR PLACEMENTS

Yicheng Hong and Sungchul Lee

Abstract. The limiting distribution for the linear placement statistics
under the null hypotheses has been provided by Orban and Wolfe [9]
and Kim [5] when one of the sample sizes goes to infinity, and by Kim,
Lee and Wang [6] when the sample sizes of each group go to infinity
simultaneously. In this paper we establish the generalized Kruskal-Wallis
one-way analysis of variance for the linear placement statistics.

1. Introduction and statement of main results

To determine whether the mutually independent random samples come from
a common underlying distribution, we use various kinds of two-sample tests.
Two-sample tests that are valid with no assumptions (except the continuity
of the underlying distribution), are called the distribution-free procedures.
Some distribution-free procedures use the sample ranks; the rank-sum test
of Wilcoxon [11] and the median test of Mood [8]. Other distribution-free tests
utilize the sample placements; the linear placement test of Orban and Wolfe
[9] and the fixed and updated linear placement test of Kim [5].

Asymptotic theories for the sample rank tests are well developed; see Cher-
noff and Savage [1], Govindarajulu, Le Cam and Raghavachari [3], Hajek [4],
Pyke and Shorak [10], and Dupac and Hajek [2]. However, asymptotic theo-
ries for the sample linear placement tests are quite limited. Orban and Wolfe
[9] provided the limiting theory when one of the sample sizes goes to infinity.
Kim and Wolfe [7] investigated the iterative asymptotic distribution when the
control group sample size goes to infinity then the treatment group sample size
goes to infinity. Similarly, Kim [5] established the limiting theory of the fixed
and updated linear placement test when the control group sample size goes to
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infinity. Moreover, Kim, Lee, and Wang [6] further established the central limit
theorem when the sample sizes of each group go to infinity simultaneously.

In this paper we develop the Kruskal-Wallis one-way analysis of variance
based on linear placements. The usual Kruskal-Wallis one-way analysis of vari-
ance is based on ranks but our Kruskal-Wallis one-way analysis of variance is
based on linear placements, which can be used for comparing more than two
samples that are independent, or not related. Our main results are follows.

First we fix our notations. The data set consists of k groups and the group

i has ni observations Xij , 1 ≤ j ≤ ni. Overall we have N =
∑k

i=1 ni ob-
servations. We assume that Xij , 1 ≤ i ≤ k, 1 ≤ j ≤ ni, are mutually
independent samples from the continuous cumulative distribution functions
Gi(x) = F (x− θi).

For each Xij let Vij be the “rank” of Xij among all observations excluding
observations from the group that Xij belongs, and let Wij be its normalized
rank:

Vij =
∑

s6=i

ns
∑

t=1

1(Xst ≤ Xij),(1.1)

Wij =
Vij

N − ni

.(1.2)

We further let V i. be the sample mean rank of group i observations and V .. be
the sample mean rank of all observations:

V i. =
1

ni

ni
∑

j=1

Vij ,(1.3)

V .. =
1

N

k
∑

i=1

ni
∑

j=1

Vij .(1.4)

When the sample sizes of all groups go to infinity simultaneously, we have
the following Kruskal-Wallis one-way analysis of variance based on linear place-
ments.

Theorem 1. If θ1 = · · · = θk and if for each i, as N → ∞
ni

N
→ λi, 0 < λi < 1,

then as N → ∞

(1.5) H :=
12

N(N + 1)

k
∑

i=1

ni(V i. − EV i.)
2 ⇒ χ2

k−1,

where by (2.17), EV i. = (N − ni)/2.

In Figure 1 we create 200 samples of H using iid standard normal Xij ,
i = 1, . . . , 5, j = 1, . . . , ni. More specifically, in Figure 1(a) we consider the
equal group sizes and in Figure 1(b) we consider the unequal group sizes. In
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(a) The equal group sizes; n1 = 1010, n2 =
1000, n3 = 1020, n4 = 995 and n5 = 1015.
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(b) The unequal group sizes; n1 = 1010,
n2 = 500, n3 = 1020, n4 = 995 and n5 =
1015.

Figure 1. Comparison of the empirical distribution of H and
the Chi-square distribution. We create 200 samples of H using
iid standard normal Xij , i = 1, . . . , 5, j = 1, . . . , ni, from both
the equal group sizes (a) and the unequal group sizes (b). In
both cases we see that the distribution of H is very close to
the Chi-square distribution.

both cases we see that the distribution of the Kruskal-Wallis test statistic H
based on linear placements is very close to the Chi-square distribution as we
present in Theorem 1.

If we have the equal group sizes, we replace EV i. in H with V .. and we still
get the Chi-square limit.

Theorem 2. If θ1 = · · · = θk and if for each i, as N → ∞

(1.6) ni =
N

k
+ fi(N), fi(N) = O(Nβi), 0 ≤ βi <

1

2
,

then as N → ∞

(1.7) Ĥ :=
12

N(N + 1)

k
∑

i=1

ni(V i. − V ..)
2 ⇒ χ2

k−1.

However, if we don’t have the same group sizes, we cannot replace EV i. in
H with V .. to get the Chi-square limit.

Proposition 1. If θ1 = · · · = θk, if for each i, as N → ∞

(1.8) ni =
N

k
+ fi(N), fi(N) = O(Nβi), 0 ≤ βi < 1,

and if for some i, as N → ∞

(1.9) ni =
N

k
+ fi(N), fi(N) = Ω(Nβi),

1

2
< βi < 1,

then as N → ∞
E(H − Ĥ) → ∞ and V ar(H − Ĥ) → ∞.
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Remark. If in Proposition 1, instead of (1.8) and (1.9) we assume for each i,
as N → ∞

(1.10) ni =
N

k
+ fi(N), fi(N) = O(Nβi), 0 ≤ βi ≤

1

2
,

and if for some i, as N → ∞

(1.11) ni =
N

k
+ fi(N), fi(N) = Ω(Nβi), βi =

1

2
,

we cannot draw any meaningful conclusion for this borderline case.
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(a) The equal group sizes; n1 = 1010, n2 =
1000, n3 = 1020, n4 = 995 and n5 = 1015.
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(b) The unequal group sizes; n1 = 1010,
n2 = 500, n3 = 1020, n4 = 995 and n5 =
1015.

Figure 2. Comparison of the empirical distribution of Ĥ and
the Chi-square distribution. We create 200 samples of Ĥ using
iid standard normal Xij , i = 1, . . . , 5, j = 1, . . . , ni, from both
the equal group sizes (a) and the unequal group sizes (b). In

the equal group sizes case (a) we see that the distribution of Ĥ
is very close to the Chi-square distribution. However, in the
unequal group sizes case (b) the distribution of Ĥ is far away
from the Chi-square distribution.

Proposition 2. If θ1 = · · · = θk and if for each i, as N → ∞

(1.12)
ni

N
→ λi, 0 < λi < 1,

and

(1.13) λi 6=
1

k
for some i,

then as N → ∞

E(H − Ĥ) → ∞ and V ar(H − Ĥ) → ∞.
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In Figure 2 we create 200 samples of Ĥ using iid standard normal Xij ,
i = 1, . . . , 5, j = 1, . . . , ni. More specifically, in Figure 2(a) we consider the
equal group sizes and in Figure 2(b) we consider the unequal group sizes. In
the equal group sizes case we see that the distribution of the Kruskal-Wallis
test statistic Ĥ based on linear placements is very close to the Chi-square
distribution as we present in Theorem 2. However, in the unequal group sizes
case the distribution of Ĥ is far away from the Chi-square distribution as we
present in Propositions 1 and 2.

Let SN be the total sum of the normalized ranks Wij , i.e.,

SN =

k
∑

i=1

ni
∑

j=1

Wij .(1.14)

Then we also have the following variant of the central limit theorem of the
linear placement statistics of Kim, Lee, and Wang [6].

Theorem 3. If θ1 = · · · = θk and if for each i, as N → ∞

(1.15)
ni

N
→ λi, 0 < λi < 1,

and

(1.16) λi 6=
1

k
for some i,

then as N → ∞

Ŝ :=
SN − E (SN )
√

V ar (SN )
⇒ N (0, 1) in distribution.(1.17)

Remark. If in Theorem 3, instead of (1.16) we assume for each i

(1.18) λi =
1

k
,

we cannot prove the CLT. However, even in this case based on the simulation
we think the CLT should hold under certain mild conditions.

A little caution is needed here. As we see in (3.1), since in the extremely

balanced case n1 = · · · = nk = N/k, the sum
∑k

i=1

∑ni

j=1 Rij is a deterministic

constant N(N+1)/2, SN is not random and hence in this case the CLT cannot
be true.

In Figure 3 we create 200 samples of Ŝ using iid standard normal Xij ,
i = 1, . . . , 5, j = 1, . . . , ni. More specifically, in Figure 3(a) we consider the
equal group sizes and in Figure 3(b) we consider the unequal group sizes. In

both cases we see that the distribution of Ŝ is very close to the standard normal
distribution as we present in Theorem 3.
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(a) The equal group sizes; n1 = 1010, n2 =
1000, n3 = 1020, n4 = 995 and n5 = 1015.
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(b) The unequal group sizes; n1 = 1010,
n2 = 500, n3 = 1020, n4 = 995 and n5 =
1015.

Figure 3. Comparison of the empirical distribution of Ŝ and
the standard normal distribution. We create 200 samples of Ŝ
using iid standard normal Xij , i = 1, . . . , 5, j = 1, . . . , ni, from
both the equal group sizes (a) and the unequal group sizes (b).

In both cases we see that the distribution of Ŝ is very close to
the standard normal distribution.

We can still consider the generalization of Theorem 3 in line with Kim, Lee,
and Wang [6]. For a non-constant C1 function ϕ : [0, 1] → R we let

Sϕ
N =

k
∑

i=1

ni
∑

j=1

ϕ(Wij).

If θ1 = · · · = θk and if for each i, as N → ∞
ni

N
→ λi, 0 < λi < 1,

then as N → ∞ we conjecture that

Ŝϕ :=
Sϕ
N − E (Sϕ

N )
√

V ar (Sϕ
N )

⇒ N (0, 1) in distribution.

In Figure 4 with ϕ1(x) = x2, ϕ2(x) =
√
x, ϕ3(x) = log(1 + x), ϕ4(x) = ex,

we create 200 samples of Ŝϕi using iid standard normal Xij , i = 1, . . . , 5, j =
1, . . . , ni. More specifically, on the left we consider the equal group sizes and on
the right we consider the unequal group sizes. In these equal and unequal cases
we see that the distribution of Ŝϕi is close to the standard normal distribution
as we conjecture. More interestingly, we notice that the distribution of Ŝϕi for
the unequal group sizes is closer to the standard normal distribution than that
for the equal group sizes. This agrees with the fact that in the case ϕ(x) = x
of Theorem 3, SN in the extremely balanced case n1 = · · · = nk = N/k, is not
random and hence in this case the CLT does not hold. So, for general ϕ we
conjecture even further that in the extremely balanced case n1 = · · · = nk =
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Ŝϕ2 values

 

 

 

 

empirical c.d.f. of Ŝϕ2
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Figure 4. Comparison of the empirical distribution of Ŝϕi

and the standard normal distribution. With ϕ1(x) = x2,
ϕ2(x) =

√
x, ϕ3(x) = log(1 + x), ϕ4(x) = ex, we create 200

samples of Ŝϕ1 using iid standard normal Xij , i = 1, . . . , 5,
j = 1, . . . , ni, from both the equal group sizes n1 = 1010,
n2 = 1000, n3 = 1020, n4 = 995, n5 = 1015 on the left and
the unequal group sizes n1 = 1010, n2 = 500, n3 = 1020,
n4 = 995, n5 = 1015 on the right. In these equal and unequal
cases we see that the distribution of Ŝϕi is close to the stan-
dard normal distribution. We also note that the distribution
of Ŝϕi for the unequal group sizes on the right is closer to the
standard normal distribution than that for the equal group
sizes on the left.

N/k, the CLT does not hold and that the convergence rate for the unequal
group sizes is greater than that for the equal group sizes.
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In Section 2, we prove Kruskal-Wallis one-way analysis of variance based on
linear placements, Theorems 1, 2, and Proposition 1 using the tools developed
for Kruskal-Wallis one-way analysis of variance based on ranks. In Section
3, we prove the variant of the central limit theorem of the linear placement
statistics of Kim, Lee, and Wang [6] using Lyapunov CLT.

2. Kruskal-Wallis one-way analysis of variance based on linear

placements

In this section, we prove Kruskal-Wallis one-way analysis of variance based
on linear placements, Theorems 1, 2, and Proposition 1 using the tools devel-
oped for Kruskal-Wallis one-way analysis of variance based on ranks. To prove
this, we start with the following lemma that characterizes the Chi-square dis-
tribution.

Lemma 1. Let X = (X1, . . . , Xn)
T be an n dimensional multivariate normal

random vector with mean vector 0 and covariance matrix B. If the covariance

matrix B satisfies the following two conditions

B2 = B and rank(B) = k,

then
∑n

i=1 X
2
i comes from the Chi-square distribution with the degree of freedom

k :
n
∑

i=1

X2
i ∼ χ2

k.

Proof. SinceB is symmetric, there is an orthogonal matrix P such that P−1BP

= Λ, where Λ is a diagonal matrix. Since rank(B) = k, Λ has k non-zero
diagonal elements. By rearranging the coordinates if needed, we may assume
that the first k diagonal elements of Λ are non-zero. Since B2 = B, all the
non-zero diagonal elements of Λ are in fact 1.

Since X ∼ Nn (0,B) and since P−1BP = Λ, we see that Z := P−1X =
(Z1, . . . , Zn)

T is an n dimensional multivariate normal random vector with
mean vector 0 and covariance matrix Λ, i.e., Z ∼ Nn (0,Λ) . Since the co-
variance matrix Λ is diagonal and since the first k diagonal elements of Λ are
1 and all other elements of Λ are 0, Z1, . . . , Zk are iid standard normal and
Zk+1 = · · · = Zn = 0. Therefore,

n
∑

i=1

X2
i = XTX = ZTP−1PZ = ZTZ =

n
∑

i=1

Z2
i =

k
∑

i=1

Z2
i ∼ χ2

k.
�

Proof of Theorem 1. Let T := (T1, . . . , Tk)
T be given by

(2.1) Ti :=

√

12ni

N(N + 1)
(V i. − EV i.), i = 1, . . . , k.

By Lemma 1, to prove Theorem 1 it suffices to prove the following three;

T ∼ Nk(0,B),(2.2)



KRUSKAL-WALLIS ONE-WAY ANALYSIS 709

B = B2,(2.3)

rank(B) = k − 1.(2.4)

To prove these we use the tools developed for Kruskal-Wallis one-way anal-
ysis of variance based on ranks. For each Xij let Rij be the rank of Xij among
all the observations from all groups, and let Lij be the rank of Xij among all
the observations from group i:

Rij =

k
∑

s=1

ns
∑

t=1

1(Xst ≤ Xij),

Lij =

ni
∑

t=1

1(Xit ≤ Xij).

We further let Ri. be the sample mean rank of group i observations and R.. be
the sample mean rank of all observations:

(2.5) Ri. =
1

ni

ni
∑

j=1

Rij :=
1

ni

Ri.,

(2.6) R.. =
1

N

k
∑

i=1

ni
∑

j=1

Rij :=
1

N
R...

By the definitions of Vij , Rij , and Lij , we can rewrite Vij as

(2.7) Vij = Rij − Lij.

Since

(2.8)

ni
∑

j=1

Lij =

ni
∑

j=1

j =
ni(ni + 1)

2
,

by (2.7) we see Vi. − EVi. = Ri. − ERi. and hence

(2.9) V i. − EV i. = Ri. − ERi..

So, we can rewrite Ti as

(2.10) Ti =

√

12ni

N(N + 1)
(Ri. − ERi.), i = 1, . . . , k.

Now the standard results on the Kruskal-Wallis one-way analysis of variance
based on ranks say that T := (T1, . . . , Tk)

T with Ti given by (2.10) satisfies
(2.2)-(2.4). Therefore, Theorem 1 follows from Lemma 1. �

Lemma 2. For Rij , Lij, and Ri., we have

ERij =
N+1
2 , V ar(Rij) =

(N−1)(N+1)
12 , Cov(Rij , Rst) = −N+1

12 ,

ELij =
ni+1

2 , V ar(Lij) =
(ni−1)(ni+1)

12 , Cov(Lij , Lik) = −ni+1
12 ,

ERi. =
ni(N+1)

2 , V ar(Ri.) =
ni(N−ni)(N+1)

12 , Cov(Ri., Rj.) = −ninj(N+1)
12 .
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Proof. By symmetry Rij is uniform on {1, 2, . . . , N}, i.e., for any observation
Xij

P (Rij = r) =
1

N
for 1 ≤ r ≤ N.

Also, by symmetry for any two different observations Xij and Xst

P (Rij = r, Rst = l) =
1

N(N − 1)
for 1 ≤ r 6= l ≤ N.

The lemma for Rij and Ri. follows from the direct calculation using the above
joint probability mass function. By the same reasoning one can get the lemma
for Lij . �

By the definitions of Ĥ and H , we can decompose Ĥ into H and C;

Ĥ =
12

N(N + 1)

k
∑

i=1

ni(V i. − V ..)
2(2.11)

=
12

N(N + 1)

k
∑

i=1

ni((V i. − EV i.) + (EV i. − V ..))
2 = H + C,

where, by (2.9)

C :=
12

N(N + 1)

[

k
∑

i=1

ni(EV i. − V ..)
2 +

k
∑

i=1

2ni(EV i. − V ..)(V i. − EV i.)

]

(2.12)

=
12

N(N + 1)

[

k
∑

i=1

ni(EV i. − V ..)
2 +

k
∑

i=1

2ni(EV i. − V ..)(Ri. − ERi.)

]

.

So by Theorem 1, to prove Theorem 2 it suffices to prove that under the
conditions of Theorem 2, C → 0 in probability, or

(2.13) EC → 0,

(2.14) V ar(C) → 0,

and to prove Propositions 1 and 2 we just need to show that under the condi-
tions of Propositions 1 and 2,

(2.15) EC → ∞,

(2.16) V ar(C) → ∞.

By (2.7), (2.8) and Lemma 2,

(2.17) EV i. =
1

ni



E





ni
∑

j=1

Rij



− E





ni
∑

j=1

Lij







 =
N − ni

2
.
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By (2.17), (2.7) and (2.8), we see that EV i. − V .. is actually a deterministic
constant;

(2.18) EV i. − V .. =
N − ni

2
− 1

N

k
∑

s=1

ns
∑

t=1

Vst =
1

N

k
∑

s=1

n2
s

2
− ni

2
.

By (2.12) and (2.18), the random part of C is just 12
N(N+1)

∑k
i=1 2ni(EV i.−

V ..)Ri.. Again, by (2.18) we can rewrite the major part
∑k

i=1 2ni(EV i. −
V ..)Ri. of the random part of C as

k
∑

i=1

2ni(EV i. − V ..)Ri. =

k
∑

i=1

2ni

(

1

N

k
∑

s=1

n2
s

2
− ni

2

)

Ri.(2.19)

=

k
∑

i=1

(

1

N

k
∑

s=1

n2
s − ni

)

Ri..

Take the expectation and variance on the both sides of (2.19). Then, by Lemma
2 we have

(2.20) E

(

k
∑

i=1

2ni(EV i. − V ..)Ri.

)

=

k
∑

i=1

(

1

N

k
∑

s=1

n2
s − ni

)

E (Ri.) = 0,

and

V ar

(

k
∑

i=1

2ni(EV i. − V ..)Ri.

)

= V ar

(

k
∑

i=1

(

1

N

k
∑

s=1

n2
s − ni

)

Ri.

)

(2.21)

=
N + 1

12



N

k
∑

i=1

n3
i −

(

k
∑

s=1

n2
s

)2


 .

So, by (2.12), (2.18), (2.20), and (2.21) we have

(2.22) E(C) = 3f(N),

(2.23) V ar(C) = 12f(N),

where

(2.24) f(N) :=
1

N2(N + 1)



N

k
∑

i=1

n3
i −

(

k
∑

s=1

n2
s

)2


 .

Since ni =
N
k
+ fi(N) and since

∑k
i=1 fi(N) = 0, we have

f(N) =
1

N2(N + 1)



N
k
∑

i=1

(

N

k
+ fi(N)

)3

−
(

k
∑

i=1

(

N

k
+ fi(N)

)2
)2




(2.25)
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=
1

N(N + 1)

k
∑

i=1

f3
i (N) +

1

k(N + 1)

k
∑

i=1

f2
i (N)

− 1

N2(N + 1)

(

k
∑

i=1

f2
i (N)

)2

.

Proof of Theorem 2. By dropping the last negative term in the right hand side
of (2.25), we have

(2.26) f(N) ≤ 1

N(N + 1)

k
∑

i=1

f3
i (N) +

1

k(N + 1)

k
∑

i=1

f2
i (N).

If by (1.6) for all i, fi(N) = O(Nβ), 0 ≤ β < 1
2 , by (2.26) as N → ∞

f(N) → 0,

and hence by (2.22)-(2.24) both the mean and the variance of C go to 0.
Therefore, by (2.13) and (2.14) Theorem 2 follows. �

Proof of Proposition 1. By (1.12) the first term in the right hand side of (2.25)

is bounded by 1
N

∑k
i=1 f

2
i (N);

(2.27)
1

N(N + 1)

k
∑

i=1

f3
i (N) = o

(

1

N

k
∑

i=1

f2
i (N)

)

.

Again by (1.12)

(2.28)
1

k
− 1

N2

k
∑

i=1

f2
i (N) → 1

k
.

So, by (2.28) among the second and third terms in the right hand side of (2.25)
the second is the major term;

1

k(N + 1)

k
∑

i=1

f2
i (N)− 1

N2(N + 1)

(

k
∑

i=1

f2
i (N)

)2

(2.29)

=

(

1

N + 1

k
∑

i=1

f2
i (N)

)(

1

k
− 1

N2

k
∑

i=1

f2
i (N)

)

.

Combining (2.27), (2.28), and (2.29) we see that f(N) is of order 1
N

∑k
i=1 f

2
i (N);

(2.30) f(N) = Ω

(

1

N

k
∑

i=1

f2
i (N)

)

.

If by (1.9) for some i, fi(N) = Ω(Nβi), 1
2 < βi < 1, by (2.30) as N → ∞

f(N) → ∞,
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and hence by (2.22)-(2.24) both the mean and the variance of C go to ∞.
Therefore, by (2.15) and (2.16) Proposition 1 follows. �

Proof of Proposition 2. Under the conditions (1.12) and (1.13) we have unequal

0 < λi < 1 with
∑k

i=1 λi = 1. For these λi we consider a random variable X
with

P (X = λi) = λi for 1 ≤ i ≤ k.

Let’s calculate its variance. Since EX =
∑k

i=1 λ
2
i and since EX2 =

∑k
i=1 λ

3
i ,

we have

(2.31) V ar(X) = EX2 − (EX)2 =

k
∑

i=1

λ3
i −

(

k
∑

i=1

λ2
i

)2

.

Since X is not a constant but finite random variable, it has a non-zero but
finite variance. Therefore, by (2.31) we see that, for unequal 0 < λi < 1 with
∑k

i=1 λi = 1

(2.32) 0 <

k
∑

i=1

λ3
i −

(

k
∑

i=1

λ2
i

)2

< ∞.

By (2.24) and (2.32), as N → ∞

f(N) = N





k
∑

i=1

λ3
i −

(

k
∑

i=1

λ2
i

)2

+ o(1)



→ ∞,

and hence by (2.22)-(2.24) both the mean and the variance of C go to ∞.
Therefore, by (2.15) and (2.16) Proposition 2 follows. �

3. Proof of Theorem 3

In this section we use Lyapunov’s CLT and prove Theorem 3.
By (2.7) and (2.8) we can rewrite SN as

SN =

k
∑

i=1

ni
∑

j=1

N + 1

N − ni

Rij

N + 1
−

k
∑

i=1

ni(ni + 1)

2(N − ni)
.(3.1)

Since {Uij :=
Rij

N+1} have the following (joint) probability mass function

P

(

Uij =
k

N + 1

)

=
1

N
for 1 ≤ k ≤ N,

P

(

Uij =
k

N + 1
, Ui′j′ =

k′

N + 1

)

=
1

N(N − 1)
for 1 ≤ k 6= k′ ≤ N,

{Uij} have the following mean, variance, and covariance

(3.2) EUij =
1

2
,
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(3.3) V ar(Uij) =
2N + 1

6N + 6
− 1

4
=

1

12
− 1

6
N−1 +O(N−2),

(3.4) Cov(Uij , Ui′j′) =
3N2 −N − 2

12(N + 1)(N − 1)
− 1

4
= − 1

12
N−1 +O(N−2).

Since N+1
N−ni

→ 1
1−λi

and since
∑k

i=1
ni(ni+1)
2N(N−ni)

is non-random, we see that the

asymptotics of SN is the same as that of TN , where TN is defined as

(3.5) TN =

k
∑

i=1

ni
∑

j=1

AiUij ,

where

(3.6) Ai =
1

1− λi

.

By (3.3), (3.4), and (3.6),

V ar(TN ) = V ar





k
∑

i=1

ni
∑

j=1

AiUij



(3.7)

=
∑

ij

A2
i

(

1

12
− 1

6
N−1 +O(N−2)

)

−
∑

ij

∑

i′j′ 6=ij

AiAi′

(

1

12
N−1 +O(N−2)

)

=
N

12

[

k
∑

i=1

λi

(1− λi)2
−

k
∑

=1

k
∑

i′=1

λiλi′

(1− λi)(1− λi′ )
+O(N−1)

]

=
N

12





k
∑

i=1

λi

(1− λi)2
−
(

k
∑

i=1

λi

1− λi

)2

+O(N−1)



 .

Under the conditions (1.15) and (1.16) we have unequal 0 < λi < 1 with
∑k

i=1 λi = 1. For these λi we consider a random variable Y with

P

(

Y =
1

1− λi

)

= λi for 1 ≤ i ≤ k.

Let’s calculate its variance. Since EY =
∑k

i=1 λi/(1 − λi) and since EY 2 =
∑k

i=1 λi/(1− λi)
2, we have

(3.8) V ar(Y ) = EY 2 − (EY )2 =

k
∑

i=1

λi

(1− λi)2
−
(

k
∑

i=1

λi

1− λi

)2

.

Since by (1.16), Y is not a constant but finite random variable, it has a non-
zero but finite variance. Therefore, by (3.8) we see that, for unequal 0 < λi < 1
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with
∑k

i=1 λi = 1

(3.9) 0 <

k
∑

i=1

λi

(1− λi)2
−
(

k
∑

i=1

λi

1− λi

)2

< ∞.

Therefore, by (3.7) and (3.9) we have

(3.10) V ar(TN ) = Ω(N).

Since 0 ≤ Uij ≤ 1, for any fixed δ > 0, E |Uij − EUij |2+δ
is bounded by 1.

So,

k
∑

i=1

ni
∑

j=1

E |AiUij − EAiUij |2+δ
(3.11)

=

k
∑

i=1

ni
∑

j=1

A2+δ
i E |Uij − EUij |2+δ ≤

k
∑

i=1

niA
2+δ
i

≤ N

[

k
∑

i=1

λi

(1− λi)2+δ
+ o(1)

]

.

By (3.10) and (3.11) one can easily check the Lyapunov condition;

lim
n→∞

(V ar(TN ))
−(1+ δ

2
)

k
∑

i=1

ni
∑

j=1

E |AiUij − EAiUij |2+δ → ∞.

Hence, by Lyapunov’s CLT Theorem 3 follows.
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