
Bull. Korean Math. Soc. 51 (2014), No. 3, pp. 691–700
http://dx.doi.org/10.4134/BKMS.2014.51.3.691

NORMAL FAMILY OF MEROMORPHIC FUNCTIONS

Jian-Ping Wang

Abstract. We study normality for families of meromorphic functions
which is related to an extended version of a Hayman’s conjecture on
value distribution, and prove several normality criteria for meromorphic
functions and certain non-homogeneous differential polynomials.

1. Introduction and results

We shall use the usual notations and classical results of Nevanlinna’s theory
(see [16]). Let f, g be non-constant meromorphic functions and c be a finite
complex number. We say that f and g share the value c if f − c and g− c have
the same zeros (see [16]). Throughout the paper, we denote by C the complex
plane and by D a domain in C.

A family F of functions meromorphic in D is said to be normal if each
sequence in F has a subsequence which converges spherically uniformly on
compact subsets of D [12].

Hayman [7] proposed a well-known conjecture on value distribution: If f is
a transcendental meromorphic functions and n is a positive integer, then fnf ′

assumes every finite non-zero value infinitely often. This conjecture, following
partial results by Clunie [5], Mues [10] and Hayman [7], was finally confirmed
by Bergweiler and Eremenko [2], Chen and Fang [4], independently.

In 1993, C. C. Yang, L. Yang and Y. F. Wang [15] considered an extended
version of the above Hayman’s conjecture and proved that if f is a transcenden-
tal entire function, and k, n(≥ 2) are positive integers, then f(f (k))n assumes
every finite non-zero value infinitely often. They also pointed out, but without
proof, that the same conclusion holds for n = 1. Although the current partial
answers to this Yang’s problem are affirmative (see [1, 3, 8, 9, 11, 13, 14, 18]),
the verification of its validity may need more time.
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According to Bloch’s principle (see [17, p. 222]), it is natural to consider
the normality for family of meromorphic functions corresponding to the above
Yang’s problem. In this direction, Pang and Zalcman proved the following
results.

Theorem A ([11]). Let k be a positive integer and let F be a family of functions

holomorphic in a unit disc ∆ such that each f ∈ F has only zeros of multiplicity

at least k. Suppose that there exist positive integer n and finite non-zero complex

number c such that fnf (k) 6= c for each f ∈ F and all z ∈ ∆. Then F is normal

in ∆.

In this paper, we study the normality for families of meromorphic functions
corresponding to the above Yang’s problem and prove the following results.

Theorem 1. Let k ≥ 3 be a positive integer and let c be a finite non-zero

complex number. Let F be a family of functions meromorphic in D such that

each f ∈ F has only zeros of multiplicity at least k and poles of multiplicity at

least 2. If, for each pair of functions f and g in F , ff (k) and gg(k) share the

value c, then F is normal in D.

Example. Let D = {z : |z| < 1} and F = {fj}, where fj(z) = jzk−1, z ∈
D, j = 1, 2, . . .. We see that each fj ∈ F has only zero of multiplicity k − 1

and that fjf
(k)
j and flf

(k)
l share c for each pair of functions fj and fl in F .

But F is not normal at z = 0.

The above example shows that the hypothesis that each f ∈ F has only
zeros of multiplicity at least k is best possible for Theorem 1.

For normality criteria concerning differential polynomials, we have:

Theorem 2. Let k ≥ 3 be a positive integer and let a1(z), a2(z), . . . , ak+2(z) be
functions holomorphic in D with ak+2(z) 6= 0. Let F be a family of functions

meromorphic in D such that each f ∈ F has only zeros of multiplicity at least

k and poles of multiplicity at least 2. Set

E(f) =

{

z ∈ D :
k
∑

m=0

am(z)f(z)f (k−m)(z) + ak+1(z)f(z) + ak+2(z) = 0

}

,

where a0(z) ≡ 1 and f (0) ≡ f . If there exists a constant M > 0 such that

|f (k)(z)| ≤ M for each f ∈ F and all z ∈ E(f), then F is normal in D.

Suppose that am(z) ≡ 0 form = 1, 2, . . . , k+1. Then the following corollaries
are immediate results of Theorem 2.

Corollary 1. Let k ≥ 3 be a positive integer and let c(z) be a non-vanishing

holomorphic function in D. Let F be a family of functions meromorphic in

D such that each f ∈ F has only zeros of multiplicity at least k and poles of

multiplicity at least 2. If f(z)f (k)(z) 6= c(z) for each f ∈ F and all z ∈ D,

then F is normal in D.
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Corollary 2. Let k ≥ 3 be a positive integer and let c(z) be a non-vanishing

holomorphic function in D. Let F be a family of functions holomorphic in D
such that each f ∈ F has only zeros of multiplicity at least k. If f(z)f (k)(z) 6=
c(z) for each f ∈ F and all z ∈ D, then F is normal in D.

Obviously Corollary 2 generalizes Theorem A from a non-zero constant c
to a function c(z) which is holomorphic and non-vanishing in D for the cases
k ≥ 3 and n = 1.

2. Lemmas

Lemma 1 ([17, p. 216]). Let F be a family of functions meromorphic in the

unit disc △, let k, l be positive integers and α be a real number with −l < α < k.
Suppose that all zeros of functions in F have multiplicity at least k and all poles

of functions in F have multiplicity at least l and that F is not normal at z0 ∈ △.

Then there exist functions fj ∈ F , points zj ∈ △, positive numbers ρj and a

non-constant function g which is meromorphic in C such that zj → z0, ρj → 0
and ρ−α

j f(zj + ρjζ) → g(ζ) spherically uniformly on compact sets of C.

Lemma 2 ([6, Lemma 2]). Let f be a non-constant meromorphic function and

let Q1[f ], Q2[f ] be differential polynomials in f . Let n be a positive integer

and fnQ1[f ] = Q2[f ]. If γQ2
≤ n, then m(r,Q1[f ]) = S(r, f), where γQ2

is the

degree of Q2[f ].

To state our lemmas, we need the following notations.
Let f be a non-constant meromorphic function in C and let k be a positive

integer. We denote by Nk)(r, 1/f) the counting function for zeros of f with
multiplicity at most k, N(k(r, 1/f) the counting function for zeros of f with
multiplicity at least k, and Nk(r, 1/f) the counting function for zeros of f with
multiplicity k. As usual, we use Nk)(r, 1/f), N (k(r, 1/f) and Nk(r, 1/f) to
denote the corresponding reduced ones, without regard to multiplicity.

Lemma 3. Let k ≥ 3 be a positive integer and let f be a transcendental mero-

morphic function in C. If f has only zeros of multiplicity at least k and poles of

multiplicity at least 2, then ff (k) assumes every finite non-zero complex number

infinitely often.

Proof. Let c be a finite non-zero complex number. Set

(2.1) F = ff (k) − c.

By (2.1) we have

(2.2) T (r, F ) = O(T (r, f)).

Rewriting (2.1) as F − ff (k) = −c, which leads to

(−c)
F ′

F
= (F − ff (k))

F ′

F
= F ′ − ff (k)F

′

F
= f ′f (k) + ff (k+1) − ff (k)F

′

F
,
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so that

(2.3) fφ = (−c)
F ′

F
,

where

(2.4) φ =
f ′

f
f (k) + f (k+1) − f (k)F

′

F
.

We shall show that F is not a constant. Otherwise we have ff (k) ≡ b for
some constant b. Since f has only zeros of multiplicity at least k, we find b 6= 0
and thus f 6= 0, which means that b/f2(≡ f (k)/f) must be an entire function.
This together with Nevanlinna’s first fundamental theorem yields

2T (r, f) +O(1) = T (r, b/f2) = m(r, b/f2) = m(r, f (k)/f) = S(r, f),

so that f is a constant. It is impossible. Hence F is not a constant.
Now we can derive from (2.3) that φ 6≡ 0. By applying Lemma 2 to (2.3)

and noting (2.2) we obtain

(2.5) m(r, φ) = S(r, f).

From (2.1) we see that any pole of f must be a simple pole of F ′/F , which and
(2.3) means that any pole of f with multiplicity m (≥ 2) must be a zero of φ
with multiplicity m− 1. Thus we have

(2.6) N(2(r, f) ≤ N(r, 1/φ) +N(r, 1/φ).

If z0 is a zero of f with multiplicity n (≥ k+1), then we see from (2.1) that
F ′ has zeros at z0 with multiplicity at least n and, so is F ′/F simply noting
F (z0) = −c. From this and (2.3) it follows that z0 will never be a pole of φ.
Therefore, we deduce from (2.4) that φ can only have poles at the zeros of F
and the zeros of f with multiplicity at most k. This and (2.4) gives

(2.7) N(r, φ) ≤ Nk)(r, 1/f) +N(r, 1/F ).

From (2.2),(2.3) and Nevanlinna’s first fundamental theorem, we have

(2.8) m(r, f) ≤ m(r, 1/φ) + S(r, f) = T (r, φ)−N(r, 1/φ) + S(r, f).

Since f has no simple poles, from (2.5)-(2.8) we obtain

T (r, f) = m(r, f) +N(2(r, f) ≤ T (r, φ) +N(r, 1/φ) + S(r, f)

≤ 2T (r, φ) + S(r, f) ≤ 2Nk)(r, 1/f) + 2N(r, 1/F ) + S(r, f).(2.9)

Noting that f has only zeros with multiplicity at least k, thus we have

(2.10) Nk)(r, 1/f) = Nk(r, 1/f) =
1

k
Nk(r, 1/f) ≤

1

k
T (r, f) +O(1).

From (2.9) and (2.10) we obtain
(

1−
2

k

)

T (r, f) ≤ 2N(r, 1/F ) + S(r, f),

so that F has infinitely many zeros since k ≥ 3. Lemma 3 is proved. �
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Lemma 4. Let k ≥ 2 be a positive integer and let c be a non-zero constant.

Suppose that f is a rational function but not a polynomial and that f has only

zeros of multiplicity at least k and poles of multiplicity at least 2, then ff (k)−c
has at least two distinct zeros.

Proof. If, to the contrary, ff (k) − c has at most one zero. We set

(2.11) f =
α(z − a1)

m1(z − a2)
m2 · · · (z − as)

ms

(z − b1)n1(z − b2)n2 · · · (z − bt)nt
=

Q(z)

P (z)
, say,

where aµ (µ = 1, 2, . . . , s), bν (ν = 1, 2, . . . , t) and α(6= 0) are constants, P (z)
and Q(z) are relatively prime polynomials. By the assumptions we have mµ ≥
k (µ = 1, 2, . . . , s) and nν ≥ 2 (ν = 1, 2, . . . , t). For simplicity we write

(2.12) q = m1 +m2 + · · ·+ms ≥ ks,

(2.13) p = n1 + n2 + · · ·+ nt ≥ 2t.

By differentiating (2.11) k times we have

(2.14) f (k) =
α(z − a1)

m1−k(z − a2)
m2−k · · · (z − as)

ms−kG(z)

(z − b1)n1+k(z − b2)n2+k · · · (z − bt)nt+k
,

where G(z) is a polynomial of degree at most k(s + t − 1), with constants as
coefficients. In fact we have

G(z)=(q−p)(q−p−1) · · · [q−p−(k−1)]zk(s+t−1)+d1z
k(s+t−1)−1+· · ·+dk(s+t−1).

From (2.11) and (2.14) we get
(2.15)

ff (k) =
α2(z − a1)

2m1−k(z − a2)
2m2−k · · · (z − as)

2ms−kG(z)

(z − b1)2n1+k(z − b2)2n2+k · · · (z − bt)2nt+k
=

Q1(z)

P1(z)
, say,

where P1(z) and Q1(z) are also relatively prime polynomials.
If we write G(z) = β(z − c1)

l1(z − c2)
l2 · · · (z − cq)

lq , where l1, l2, . . . , lq are
non-negative integers; c1, c2, . . . , cq and β are constants with β 6= 0, and then
substitute it into (2.15), then by differentiating (2.15) with the same method
as (2.14) follows from (2.11), we can deduce that
(2.16)

(ff (k))′ =
α2(z − a1)

2m1−k−1(z − a2)
2m2−k−1 · · · (z − as)

2ms−k−1H(z)

(z − b1)2n1+k+1(z − b2)2n2+k+1 · · · (z − bt)2nt+k+1
,

where H(z) is a polynomial with degree at most deg(G) + s+ t− 1.
We now divide our argument into two cases.
Case 1. If ff (k) − c has exactly one zero, then by (2.15) we may write

(2.17) ff (k) = c+
γ(z − z0)

l

(z − b1)2n1+k(z − b2)2n2+k · · · (z − bt)2nt+k
=

Q1(z)

P1(z)
,

where l is a positive integer and γ is a non-zero constant. Since c 6= 0 we deduce
from (2.15) and (2.17) that aµ 6= z0 for µ = 1, 2, . . . , s.
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By differentiating (2.17) and noting (2.13) we have

(2.18) (ff (k))′ =
γ(z − z0)

l−1U(z)

(z − b1)2n1+k+1(z − b2)2n2+k+1 · · · (z − bt)2nt+k+1
,

where U(z) = [l − 2p− kt]zt + e1z
t−1 + · · ·+ et and e1, . . . , et are constants.

Next, we shall distinguish two subcases.
Subcase 1.1. If l 6= 2p + kt, then by (2.17) we have deg(P1) ≤ deg(Q1).

This together with (2.15) implies that 2p + kt = deg(P1) ≤ deg(Q1) ≤ 2q −
ks+ k(s+ t− 1), which leads to p < q.

Noting that aµ 6= z0 for µ = 1, 2, . . . , s, thus we have from (2.16) and (2.18)

2q − (k + 1)s =

s
∑

µ=1

(2mµ − k − 1) ≤ deg(U) = t.

By this together with (2.12), (2.13), we have 2q ≤ (k+1)s+ t ≤ 3
2q+

1
2p since

k ≥ 2. This contradicts p < q.
Subcase 1.2. If l = 2p+kt, then we see from (2.17) that deg(Q1) ≤ deg(P1),

and thus by (2.15) we get

(2.19) 2q − ks+ deg(G) = deg(Q1) ≤ deg(P1) = 2p+ kt.

Since aµ 6= z0 for µ = 1, 2, . . . , s, again from (2.16), (2.18) we have l − 1 ≤
deg(H) and thus

(2.20) 2p+ kt = l ≤ deg(H) + 1 ≤ deg(G) + s+ t.

Using (2.19), (2.20) and noting (2.12), (2.13), we obtain 2q ≤ ks+s+t ≤ 3
2q+

1
2p

since k ≥ 2, which leads to q ≤ p.
However, if we substitute the fact deg(G) ≤ k(s+ t− 1) into (2.20), then we

have 2p+ kt ≤ k(s+ t− 1) + s+ t, which together with (2.12), (2.13) implies
that 2p ≤ ks+ s+ t− k < 3

2q +
1
2p, contradicting q ≤ p.

Case 2. If ff (k) − c has no zeros, then we see that l = 0 in equality (2.17)
and thus l 6= 2p + kt. By the same proceeding as in the subcase 1.1, we can
also get a contradiction.

Hence, ff (k) − c has at least two distinct zeros. Lemma 4 is proved. �

Lemma 5. Let k ≥ 3 be a positive integer and let c be a non-zero constant.

If f is a non-constant meromorphic function such that f has only zeros of

multiplicity at least k and poles of multiplicity at least 2, then ff (k) − c has at

least two distinct zeros.

Proof. Suppose first that f is a polynomial. Then ff (k) is also a polynomial
with degree at least k since f has only zeros of multiplicity at least k, and
thus ff (k) − c has at least one zero. If ff (k) − c has exactly one zero, say z0,
then there exist a non-zero constant λ and a positive integer m(≥ k) such that
ff (k) = c+λ(z−z0)

m, which, however, must only have simple zero since c 6= 0.
This is impossible because f is a polynomial and all its zeros have multiplicity
at least k ≥ 3.
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If f is rational but not a polynomial, then Lemma 5 follows from Lemma
4 immediately. Finally, if f is transcendental, then by Lemma 3 we know
that ff (k) − c can assume zero infinitely often. The proof of Lemma 5 is
complete. �

3. Proof of Theorem 1

Suppose, to the contrary, that F is not normal at z0 ∈ D. Then by Lemma
1 with α = k/2, there exist points zj ∈ D, functions fj ∈ F and positive
numbers ρj such that zj → z0, ρj → 0 and

gj(ζ) = ρ
−

k
2

j fj(zj + ρjζ) → g(ζ)

locally uniformly in C with respect to the spherical metric, where g is a non-
constant meromorphic function. By Hurwitz’s theorem, we see that all zeros
of g have multiplicity at least k and all poles of g have multiplicity at least 2.

On every compact subset of C, we have

(3.1) fj(zj + ρjζ)f
(k)
j (zj + ρjζ)− c = gj(ζ)g

(k)
j (ζ)− c −→ g(ζ)g(k)(ζ)− c,

spherically uniformly.
If gg(k) ≡ c, then g 6= 0,∞ since c 6= 0 and thus c/g2(≡ g(k)/g) is an entire

function. This together with Nevanlinna’s first fundamental theorem provides

2T (r, g) +O(1) = T (r, c/g2) = m(r, c/g2) = m(r, g(k)/g) = S(r, g),

which implies that g is a constant. It is a contradiction. Hence gg(k) − c 6≡ 0.
By Lemma 5 we know that gg(k) − c has at least two distinct zeros, say ζ0

and ζ∗0 . Thus there exists a positive number δ and disjoint plane domains D1

and D2 such that gg(k) − c has no other zeros in D1

⋃

D2 apart from ζ0 and
ζ∗0 , where D1 = {ζ ∈ C : |ζ − ζ0| < δ} and D2 = {ζ ∈ C : |ζ − ζ∗0 | < δ}.

In view of gg(k) − c 6≡ 0, by Hurwitz’s theorem and (3.1), we see that there
exist points ζj ∈ D1 and ζ∗j ∈ D2 such that ζj → ζ0, ζ∗j → ζ∗0 and

(3.2) fj(zj+ρjζj)f
(k)
j (zj+ρjζj)−c = 0, fj(zj+ρjζ

∗

j )f
(k)
j (zj+ρjζ

∗

j )−c = 0

for sufficiently large j. By the hypotheses of Theorem 1, f1f
(k)
1 and fjf

(k)
j

share the value c for all integers j ≥ 2. It follows from (3.2) that for j large
enough

(3.3) f1(zj+ρjζj)f
(k)
1 (zj+ρjζj)−c = 0, f1(zj+ρjζ

∗

j )f
(k)
1 (zj+ρjζ

∗

j )−c = 0.

We now claim that f1f
(k)
1 − c 6≡ 0. Since otherwise we can deduce that f1

must be a constant by the same way as we have used above in this section,
which contradicts (3.3) and thus our claim is proved. Therefore, the set of all

zeros of f1f
(k)
1 − c has no accumulation points. By considering zj + ρjζj → z0

and zj + ρjζ
∗

j → z0, it follows that, for sufficiently large j, zj + ρjζj = z0
and zj + ρjζ

∗

j = z0, which leads to ζj = ζ∗j . This contradicts the fact that

ζj ∈ D1, ζ∗j ∈ D2 and D1

⋂

D2 = Ø. Theorem 1 is proved.
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4. Proof of Theorem 2

If, to the contrary, F is not normal at z0 ∈ D, then by Lemma 1 with α =
k/2, there exist points zj ∈ D, functions fj ∈ F and positive numbers ρj such

that zj → z0, ρj → 0 and gj(ζ) = ρ
−

k
2

j fj(zj + ρjζ) converges locally uniformly

to a non-constant meromorphic function g(ζ) in C. By Hurwitz’s theorem, all
zeros of g have multiplicity at least k and all poles of g have multiplicity at least
2. Clearly ak+2(z0) 6= 0,∞ since ak+2(z) is holomorphic and non-vanishing in
D. Hence by Lemma 5 we see that equation g(ζ)g(k)(ζ) + ak+2(z0) = 0 must
have a solution in C.

We may now assume that there exists ξ0 ∈ C such that g(ξ0)g
(k)(ξ0) +

ak+2(z0) = 0. Then g(ξ0) 6= ∞ since ak+2(z) is holomorphic in D. So there
exists δ > 0 such that g(ζ) is analytic in D2δ = {ζ ∈ C : |ζ − ξ0| < 2δ}. For

r = 1, 2, . . . , k, since g
(r)
j (ζ) → g(r)(ζ) uniformly in Dδ = {ζ ∈ C : |ζ−ξ0| < δ},

thus all g
(r)
j (ζ) are also analytic in Dδ for sufficiently large j. By an elementary

computation we have

gj(ζ)g
(k)
j (ζ)

= fj(zj + ρjζ)

{

k
∑

m=0

am(zj + ρjζ)f
(k−m)
j (zj + ρjζ) + ak+1(zj + ρjζ)

}

− fj(zj + ρjζ)

{

k
∑

m=1

am(zj + ρjζ)f
(k−m)
j (zj + ρjζ) + ak+1(zj + ρjζ)

}

= fj(zj + ρjζ)

{

k
∑

m=0

am(zj + ρjζ)f
(k−m)
j (zj + ρjζ) + ak+1(zj + ρjζ)

}

−
k
∑

m=1

am(zj + ρjζ)ρ
m
j gj(ζ)g

(k−m)
j (ζ) − ρ

k
2

j gj(ζ)ak+1(zj + ρjζ),(4.1)

where g
(0)
j ≡ gj . Noting that ρj → 0, zj → z0 ∈ D and that for m =

1, 2, . . . , k + 1 am(z) are analytic in D, thus there exists a constant L > 0,
depending only on z0, such that |am(zj + ρjζ)| ≤ L for sufficiently large j and

ζ ∈ Dδ. Therefore, we have uniformly
∑k

m=1 am(zj+ρjζ)·ρ
m
j ·gj(ζ)g

(k−m)
j (ζ) →

0 in Dδ/2 = {ζ ∈ C : |ζ − ξ0| < δ/2}. By this and (4.1) we have uniformly in
Dδ/2

fj(zj + ρjζ)

{

k
∑

m=0

am(zj + ρjζ)f
(k−m)
j (zj + ρjζ) + ak+1(zj + ρjζ)

}

+ ak+2(zj + ρjζ)

= gj(ζ)g
(k)
j (ζ) +

k
∑

m=1

am(zj + ρjζ)ρ
m
j gj(ζ)g

(k−m)
j (ζ)
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+ ρ
k
2

j gj(ζ)ak+1(zj + ρjζ) + ak+2(zj + ρjζ)

−→ g(ζ)g(k)(ζ) + ak+2(z0).(4.2)

It is easy to see that g(ζ)g(k)(ζ) + ak+2(z0) 6≡ 0. If this is not the case, then
we can deduce that g is a constant as we have done in Section 3, a contradiction.

Now we have shown that g(ξ0)g
(k)(ξ0) + ak+2(z0) = 0 and g(ζ)g(k)(ζ) +

ak+2(z0) 6≡ 0. Hence by (4.2) and Hurwitz’s theorem, there exist points ζj
such that ζj → ξ0 and

fj(zj + ρjζj)

{

k
∑

m=0

am(zj + ρjζj)f
(k−m)
j (zj + ρjζj)

+ak+1(zj + ρjζj)}+ ak+2(zj + ρjζj) = 0

for sufficiently large j. Thus we see from the hypotheses of Theorem 2 that

|g
(k)
j (ζj)| = ρ

k
2

j |f
(k)
j (zj + ρjζj)| ≤ ρ

k
2

j M , and thus |g(k)(ξ0)| = limj→∞ |g
(k)
j (ζj)|

= 0, which contradicts g(ξ0)g
(k)(ξ0) = −ak+2(z0) 6= 0. The proof of Theorem

2 is complete.
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