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ON I-SCATTERED SPACES

Zhaowen Li and Shizhan Lu

Abstract. In this paper, I-scattered spaces are introduced, and their
characterizations and properties are given. We prove that (X, τ) is scat-
tered if and only if (X, τ,I) is I-scattered for any ideal I on X.

1. Introduction

Ideals on topological spaces were studied by Kuratowski [17] and Vaidyanath-
aswamy [22]. Their applications have been investigated intensively (see [4, 7,
8, 13, 16, 18, 19, 21]).

A topological space X is said to be scattered if every nonempty subspace
contains an isolated point. In this case we say that X has a scattered topology.
Every ordinal space is scattered. Scattered spaces are a class of important
topological spaces. They have been researched deeply (see [1, 2, 3, 9, 12, 14,
15]).

The aim of this paper is to investigate scatteredness on ideal topological
spaces. We introduce the concept of I-scattered spaces, and give their charac-
terizations and properties.

2. Preliminaries

Let X be a nonempty set, let 2X be the power set of X and let I ⊂ 2X . I
is called an ideal on X if it satisfies the following conditions:

(1) If A ∈ I and B ⊂ A, then B ∈ I;
(2) If A,B ∈ I, then A ∪B ∈ I.
If τ is a topology on X and I is an ideal on X , then (X, τ, I) is called an

ideal topological space or simply an ideal space.
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Let (X, τ, I) be an ideal space. An operator (·)∗ : 2X −→ 2X , called a local
function with respect to τ and I [17], is defined as follows: for any A ⊂ X ,

A∗(I, τ) = {x ∈ X : U ∩ A 6∈ I for every U ∈ τ(x)}

where τ(x) = {U ∈ τ : x ∈ U}.
An operator cl∗(·) : 2X −→ 2X is defined as follows: for any A ⊂ X ,

cl∗(A)(I, τ) = A ∪ A∗(I, τ).

Because cl∗(·) is a Kuratowski closure operator, thus cl∗(·) generates a topol-
ogy τ∗(I, τ), called ∗-topology on X . It is easy to prove that τ∗(I, τ) ⊃ τ .

When there is no chance for confusion, we will simply write τ∗ for τ∗(I, τ),
A∗ for A∗(I, τ), c∗A for cl∗(A)(I, τ) and i∗A for int∗(A)(I, τ), where

int∗(A)(I, τ) = X − cl∗(X −A)(I, τ).

A is called ∗-closed [13] if c∗A = A, and A is called ∗-open (i.e., A ∈ τ∗) if
X −A is ∗-closed. Obviously, A is ∗-open if and only if i∗A = A.

Throughout this paper, N denotes the set of all natural numbers, spaces
always mean topological spaces or ideal topological spaces on which no separa-
tion axiom is assumed and mappings are onto. Sometimes, (X, τ) and (X, τ, I)
are simply written by X . τ ′ (resp. τ∗′) denotes the family of all closed (resp.
∗-closed) subsets of X . If U ⊂ 2X , A ⊂ X and x ∈ X , then UA denotes
{U

⋂

A : U ∈ U} and U(x) denotes {U ∈ U : x ∈ U}, the closure of A and the
interior of A in X denote, respectively, by cA and iA, and we have

iA ⊂ i∗A ⊂ A ⊂ c∗A ⊂ cA.

Lemma 2.1 ([10]). Let (X, τ, I) be an ideal space and let A ⊂ X. If U ∈ τ ,

then U ∩ c∗A ⊂ c∗(U ∩ A).

Proposition 2.2 ([20]). Let (X, τ, I) be an ideal space and let Y ⊂ X. Then

(Y, τY , IY ) is an ideal space, where IY = {I ∩ Y : I ∈ I} = {I ∈ I : I ⊂ Y }.

Lemma 2.3 ([6]). Let (X, τ, I) be an ideal space and let A ⊂ Y ⊂ X. Then

A∗(IY , τY ) = A∗(I, τ) ∩ Y .

If (X, τ) (resp. (X, τ, I)) is a space and A ⊂ Y ⊂ X , then the closure of A
and the interior of A in the subspace (Y, τY ) (resp. (Y, τY , IY )) are denoted by
cY A and iY A (resp. c∗Y A and i∗Y A), respectively.

Lemma 2.4 ([10]). Let (X, τ, I) be an ideal space and let A ⊂ Y ⊂ X. Then

c∗Y (A) = c∗A ∩ Y .

3. ∗-isolated points and ∗-derived sets

Let (X, τ) be a space and let x ∈ A ⊂ X . x is called an accumulation point
of A in X if U ∩ (A − {x}) 6= ∅ for any U ∈ τ(x). The derived set of A in X ,
denoted by d(A), is the set of all accumulation points of A in X . x is called an
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isolated point of A in X if there exists U ∈ τ(x) such that U ∩ A = {x}. We
denote the set of all isolated points of A in X by I(A). It is well known that

I(A) = A− d(A) and cA = d(A) ∪ A.

Now, we introduce the concepts of ∗-isolated points and ∗-derived sets in an
ideal space.

Definition 3.1. Let (X, τ, I) be an ideal space and let x ∈ A ⊂ X .
(1) x is called a ∗-isolated point of A in X if there exists U ∈ τ∗(x) such

that U ∩ A = {x}.
(2) x is called a ∗-accumulation point of A in X if U ∩ (A − {x}) 6= ∅ for

any U ∈ τ∗(x).

The set of all ∗-isolated points of A in X is denoted by I∗(A)(I, τ) or I∗(A).
The set of all ∗-accumulation points of A in X is denoted by d∗(A)(I, τ) or
d∗(A), which is called the ∗-derived set of A in X .

Proposition 3.2. Let (X, τ, I) be an ideal space. Then for A,B ⊂ X,

(1) I∗(A) = A− d∗(A).
(2) I(A) ⊂ I∗(A) ⊂ A.

(3) a) A = I∗(A) ∪ (d∗(A) ∩ A); b) d∗(A) ∩ A = A− I∗(A).
(4) If A ∈ τ∗ − {∅} and A ⊂ B, then I∗(A) ⊂ I∗(B).
(5) a) I∗(A) ∩ I∗(B) ⊂ I∗(A ∩B); b) I∗(A ∪B) ⊂ I∗(A) ∪ I∗(B).

Proof. (1) Let x ∈ I∗(A). Then U ∩ A = {x} for some U ∈ τ∗(x). This
implies U ∩ (A − {x}) = ∅. Then x 6∈ d∗(A). Thus x ∈ A − d∗(A) and so
I∗(A) ⊂ A− d∗(A). Conversely, let x ∈ A− d∗(A). Since x 6∈ d∗(A), we have
U ∩(A−{x}) = ∅ for some U ∈ τ∗(x). Note that U ∩A = {x}. Then x ∈ I∗(A)
and so I∗(A) ⊃ A− d∗(A). Hence I∗(A) = A− d∗(A).

(2) This is obvious.
(3) a) For any x ∈ A and U ∈ τ∗(x), U ∩A = {x} or U ∩{A−{x}} 6= ∅, then

x ∈ I∗(A) ∪ d∗(A) and A ⊂ I∗(A) ∪ d∗(A). Thus A ⊂ (I∗(A) ∪ d∗(A)) ∩ A =
I∗(A)∪(d∗(A)∩A). And A ⊃ (I∗(A)∪d∗(A))∩A. Hence A = I∗(A)∪(d∗(A)∩
A); b) This holds by a).

(4) Let x ∈ I∗(A). Then U∩A = {x} for some U ∈ τ∗(x). Since A ∈ τ∗−{∅},
U ∩ A ∈ τ∗ − {∅}. Note that (U ∩ A) ∩ B = {x}. Then x ∈ I∗(B). Thus
I∗(A) ⊂ I∗(B).

(5) This is obvious. �

Proposition 3.3. Let (X, τ, I) and (X, τ,J ) be two ideal spaces with I ⊂ J .

Then for A ⊂ X, I∗(A)(I, τ) ⊂ I∗(A)(J , τ).

Proof. Let x ∈ I∗(A)(I, τ). Then U ∩ A = {x} for some U ∈ τ∗(x)(I, τ). It
is clear that I ⊂ J implies τ∗(I, τ) ⊂ τ∗(J , τ). So U ∈ τ∗(x)(J , τ) and thus
x ∈ I∗(A)(J , τ). Hence I∗(A)(I, τ) ⊂ I∗(A)(J , τ). �

Proposition 3.4. Let (X, τ, I) and (X, σ, I) be two ideal spaces with τ ⊂ σ.

Then for A ⊂ X, I∗(A)(I, τ) ⊂ I∗(A)(I, σ).
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Proof. Clearly, τ ⊂ σ implies τ∗(I, τ) ⊂ σ∗(I, σ). Similar to the proof of
Proposition 3.3, we have I∗(A)(I, τ) ⊂ I∗(A)(I, σ). �

4. I-scattered spaces

In this section we introduce the concept of I-scattered spaces and give their
characterizations.

4.1. The concept of I-scattered spaces

Recall that a topological space (X, τ) is called scattered if every nonempty
subset has its isolated points.

Below, we introduce the concept of I-scattered spaces.

Definition 4.1. Let (X, τ, I) be an ideal space. X is called I-scattered if
I∗(A) 6= ∅ for any A ∈ 2X − {∅}.

Example 4.2. Let X = N , τ = {∅, {1}} ∪ {A ∈ 2N : A ⊃ {2, 3}} and
I = 2N−{1}. Obviously, (X, τ, I) is an ideal space.

Let Y = {2, 3}. For any U ∈ τ(2), U∩Y ⊃ {2, 3}. Then 2 6∈ I(Y ). Similarly,
3 6∈ I(Y ). Note that I(Y ) ⊂ Y . Then I(Y ) = ∅. Hence (X, τ) is not scattered.

Claim. τ∗ = 2N .
{1} ∈ τ ⊂ τ∗.
Put A = X − {2}. Since {2, 3} ∈ τ(2) and {2, 3} ∩ A = {3} ∈ I, 2 6∈ A∗.

Then c∗A = A. Thus {2} ∈ τ∗.
Put B = X − {3}. Since {2, 3} ∈ τ(3) and {2, 3} ∩ B = {2} ∈ I, 3 6∈ B∗.

Then c∗B = B. Thus {3} ∈ τ∗.
Put Cn = X−{n} with n 6= 1, 2, 3. Since {2, 3, n} ∈ τ(n) and {2, 3, n}∩Cn =

{2, 3} ∈ I, n 6∈ C∗
n. Then c∗Cn = Cn. Thus n ∈ τ∗.

Hence {n} ∈ τ∗ for any n ∈ N . So τ∗ = 2N .
Let Y ∈ 2X −{∅}. For each y ∈ Y , by Claim, {y} ∈ τ∗(y). Since {y}∩Y =

{y}, y ∈ I∗(Y ). Then I∗(Y ) ⊃ Y . Note that I∗(Y ) ⊂ Y . Then I∗(Y ) = Y 6= ∅.
Hence (X, τ, I) is I-scattered.

4.2. Characterizations of I-scattered spaces

Definition 4.3 ([11]). Let (X, τ, I) be an ideal space.
(1) A ⊂ X is called ∗-dense in X if c∗A = X .
(2) A ⊂ X is called I-dense in X if A∗ = X .

Let (X, τ, I) be an ideal space. The family of all ∗-dense subsets of X is
denoted by D∗. For the subspace (Y, τY , IY ), the family of all ∗-dense subsets
of Y is denoted by D∗(Y ), i.e., D∗(Y ) = {A ⊂ Y : c∗Y A = Y }.

Obviously, D∗(X) = D∗.

Lemma 4.4. Let (X, τ, I) be an ideal space. Then A ⊂ X is ∗-dense in X if

and only if U ∩ A 6= ∅ for any U ∈ τ∗ − {∅}.
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Proof. (Necessity) Let A be ∗-dense in X and let U ∈ τ∗ − {∅}. Pick x ∈ U .
Then x ∈ X = c∗A = A ∪ A∗.

Case 1. x ∈ A.
Then x ∈ U ∩ A. So U ∩ A 6= ∅.
Case 2. x ∈ A∗.
Suppose U ∩A = ∅. Since X−U is ∗-closed in X , (X−U)∗ ⊂ X−U . Then

U ⊂ X−(X−U)∗. By x ∈ U , x 6∈ (X−U)∗. It follows that V ∩(X−U) ∈ I for
some V ∈ τ(x). By U ∩A = ∅, A ⊂ X−U . This implies V ∩A ⊂ V ∩ (X−U).
Then V ∩ A ∈ I. So x 6∈ A∗, a contradiction. Thus, U ∩A 6= ∅.

(Sufficiency) Suppose c∗A 6= X . Put U = X − c∗A. Then U ∈ τ∗ − {∅}.
But U ∩ A = (X − c∗A) ∩ A = ∅. This is a contradiction. �

Theorem 4.5. Let (X, τ, I) be an ideal space. The following are equivalent.

(1) (X, τ, I) is I-scattered;
(2) I∗(Y ) ∈ D∗(Y ) for any Y ∈ 2X − {∅};
(3) For any Y ∈ 2X − {∅}, D ∈ D∗(Y ) if and only if D ⊃ I∗(Y );
(4) d∗(Y ) = d∗(I∗(Y )) for any Y ∈ 2X − {∅};
(5) If Y ∈ τ∗′ − {∅}, then I∗(Y ) 6= ∅.

Proof. (1) ⇒ (2) Let V ∈ τ∗Y − {∅}. Then V = W ∩ Y for some W ∈ τ∗.
Since (X, τ, I) is I-scattered, I∗(V ) 6= ∅. Pick x ∈ I∗(V ). Then U ∩ V = {x}
for some U ∈ τ∗(x). So (U ∩W ) ∩ Y = U ∩ (W ∩ Y ) = U ∩ V = {x}. Note
that U ∩ W ∈ τ∗(x). This implies x ∈ I∗(Y ). Then x ∈ V ∩ I∗(Y ) and so
V ∩ I∗(Y ) 6= ∅. By Lemma 4.4, c∗Y I

∗(Y ) = Y . Thus I∗(Y ) ∈ D∗(Y ).
(2) ⇒ (3) Let D ⊃ I∗(Y ). By (2), Y = c∗Y I

∗(Y ) ⊂ c∗Y D. Thus D ∈ D∗(Y ).
Conversely, suppose I∗(Y ) 6⊂ D for some D ∈ D∗(Y ). Then I∗(Y )−D 6= ∅.

Pick x ∈ I∗(Y ) − D. Then U ∩ Y = {x} for some U ∈ τ∗(x). Note that
U ∩ Y ∈ τ∗Y (x) and D ∈ D∗(Y ). By Lemma 4.4, D ∩ (U ∩ Y ) 6= ∅. But
D ∩ (U ∩ Y ) = D ∩ {x} = ∅, a contradiction.

(3) ⇒ (2) is obvious.
(3) ⇒ (4) Since Y ⊃ I∗(Y ), we have d∗(Y ) ⊃ d∗(I∗(Y )). It suffices to show

that d∗(Y ) ⊂ d∗(I∗(Y )).
Suppose d∗(Y ) 6⊂ d∗(I∗(Y )). Then d∗(Y ) − d∗(I∗(Y )) 6= ∅. Pick x ∈

d∗(Y )−d∗(I∗(Y )). By Proposition 3.2(1), I∗(Y ) = Y −d∗(Y ). Then x 6∈ I∗(Y ).
x 6∈ d∗(I∗(Y )) implies U ∩ (I∗(Y )−{x}) = ∅ for some U ∈ τ∗(x). Note that

x 6∈ I∗(Y ). Then (U ∩ Y ) ∩ I∗(Y ) = U ∩ I∗(Y ) = ∅ with U ∩ Y ∈ τ∗Y .
By (3), I∗(Y ) ∈ D∗(Y ). Then V ∩ I∗(Y ) 6= ∅ for any V ∈ τ∗Y . This is a

contradiction.
Hence d∗(Y ) = d∗(Y − d∗(Y )) = d∗(I∗(Y )).
(4) ⇒ (1) Suppose I∗(Y ) = ∅ for some Y ∈ 2X − {∅}. By (4), d∗(Y ) =

d∗(I∗(Y )) = d∗(∅) = ∅. By Proposition 3.2(3), Y = I∗(Y ) ∪ (d∗(Y ) ∩ Y ) = ∅,
a contradiction.

(1) ⇒ (5) is obvious.
(5) ⇒ (1) Let Y ∈ 2X − {∅}. Since c∗Y ∈ τ∗′ − {∅}, by (5), I∗(c∗Y ) 6= ∅.

Pick x ∈ I∗(c∗Y ). Then U ∩ c∗Y = {x} for some U ∈ τ∗(x).
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Suppose U ∩ Y = ∅. We have X − U ⊃ Y . Then X − U ⊃ c∗Y . So
U ∩ c∗Y = ∅. This is a contradiction. Thus U ∩ Y 6= ∅.

Since U ∩ Y ⊂ U ∩ c∗Y = {x}, we have U ∩ Y = {x}. So x ∈ I∗(Y ). This
implies I∗(Y ) 6= ∅. Hence X is I-scattered. �

Definition 4.6. Let (X, τ, I) be an ideal space. Put X0 = X and

X1 = {x ∈ X : x is not ∗-isolated in X}.

Let α be any ordinal number. If Xβ is already defined for all ordinal β < α,
then we put

(1) Xα =















(Xβ)1, if α = β + 1 and β is an ordinal number,

⋂

β<α

Xβ, if α is a limit ordinal number.

Remark 4.7. (1) X1 = X − I∗(X) = X ∩ d∗(X).
(2) Xα ⊃ Xβ whenever α ≤ β.
(3) Xα = Xα−1 − I∗(Xα−1) = Xα−1 ∩ d∗(Xα−1) for any successor ordinal

number α.
(4) If α is a successor ordinal number andXα = ∅, thenX=

⋃

β≤α−1 I
∗(Xβ).

Lemma 4.8. Xδ = Xδ+1 for some ordinal number δ.

Proof. Put |X | = k.
Case 1. There are α, β < k + 1 (α 6= β) such that Xα = Xβ.
We may suppose α < β. By Remark 4.7, Xβ = Xα ⊃ Xα+1 ⊃ · · · ⊃ Xβ .

Then Xα = Xα+1. Pick δ = α. Then Xδ = Xδ+1.
Case 2. Xα 6= Xβ for any α, β < k + 1 (α 6= β).
By Definition 4.6, I∗(Xγ) 6= ∅ for every γ < k+1. Then Xk+1 = Xk+2 = ∅.

Pick δ = k + 1. Then Xδ = Xδ+1. �

Lemma 4.9. Let (X, τ, I) be an ideal space. The following properties hold.

(1) Xα ∈ τ∗′ for any ordinal number α.

(2) If Y ⊂ X, then Y α ⊂ Xα for any ordinal number α.

Proof. (1) We use induction on α.
1) α = 1. Let x ∈ I∗(X). Then Ux ∩ X = {x} for some Ux ∈ τ∗(x).

This implies {x} = Ux ∈ τ∗. Thus I∗(X) =
⋃

x∈I∗(X){x} ∈ τ∗. Thus X1 =

X − I∗(X) ∈ τ∗′.
2) Suppose Xβ ∈ τ∗′ for any β < α. We will prove Xα ∈ τ∗′ in the following

cases.
a) α is a successor ordinal number.
Let x ∈ I∗(Xα−1). Then Ux∩Xα−1 = {x} for some Ux ∈ τ∗(x). By Remark

4.7, Xα = Xα−1 − I∗(Xα−1). So

Xα = Xα−1 −
⋃

x∈I∗(Xα−1)

{x} = (X −
⋃

x∈I∗(Xα−1)

Ux) ∩Xα−1.
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By induction hypothesis, Xα−1 ∈ τ∗′. Thus Xα ∈ τ∗′.
b) α is a limit ordinal number.
By induction hypothesis, Xβ ∈ τ∗′ for any β < α. Thus Xα =

⋂

β<αXβ ∈

τ∗′.
(2) Let Y ⊂ X . We will prove Y α ⊂ Xα for any ordinal number α.
1) Y 1 = Y ∩ d∗(Y ) ⊂ X ∩ d∗(X) = X1.

This shows Y α ⊂ Xα when α = 1.
2) Suppose Y β ⊂ Xβ for any β < α. We consider the following cases.
a) α is a successor ordinal number.
By induction hypothesis, Y α−1 ⊂ Xα−1. By Remark 4.7,

Y α = Y α−1 ∩ d∗(Y α−1) ⊂ Xα−1 ∩ d∗(Xα−1) = Xα

b) α is a limit ordinal number.
By induction hypothesis, Y β ⊂ Xβ for any β < α. Thus

Y α =
⋂

β<α

Y β ⊂
⋂

β<α

Xβ = Xα.

By 1) and 2), Y α ⊂ Xα. �

Definition 4.10. Let (X, τ, I) be an ideal space.
(1) An ordinal number β is called the derived length of X if β = min{α :

Xα = ∅}. β is denoted by δ(X).
(2) X is called to have a derived length if there is an ordinal number α such

that Xα = ∅.

Theorem 4.11. Let (X, τ, I) be an ideal space. Then X is I-scattered if and

only if X has a derived length.

Proof. (Sufficiency) Suppose that X is not I-scattered. Then I∗(A) = ∅ for
some A ∈ 2X − {∅}.

Claim. A ⊂ Xα for any ordinal number α.
(1) Let x ∈ A and U ∈ τ∗(x). Since I∗(A) = ∅, U ∩ A 6= {x}. Note that

x ∈ U ∩A. Then |U ∩A| > 2 and so U ∩ (A−{x}) 6= ∅. Now U ∩ (X −{x}) ⊃
U ∩ (A − {x}). Then U ∩ (X − {x}) 6= ∅. This implies x ∈ d∗(X) ∩ X . By
Remark 4.7, x ∈ X1.

Thus A ⊂ X − I∗(X) = X1, i.e., A ⊂ Xα when α = 1.
(2) Suppose A ⊂ Xβ for any β < α. We will prove A ⊂ Xα in the following

cases.
a) α is a successor ordinal number.
Let x ∈ A and U ∈ τ∗(x). By the proof above, U ∩ (A − {x}) 6= ∅. By

induction hypothesis, A ⊂ Xα−1. Then U ∩ (Xα−1 − {x}) 6= ∅. This implies
x ∈ d∗(Xα−1) ∩Xα−1. By Remark 4.7, x ∈ Xα.

Hence A ⊂ Xα.
b) α is a limit ordinal number.
By induction hypothesis, A ⊂ Xβ for any β < α. ThenA ⊂

⋂

β<α Xβ = Xα.
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Since X has a derived length, Xδ = ∅ for some ordinal number δ. By Claim,
A ⊂ Xα. Then A = ∅, a contradiction.

(Necessity) Suppose that X has no derived length. By Lemma 4.8, Xδ =
Xδ+1 for some ordinal number δ. By Remark 4.7, Xδ+1 = Xδ − I∗(Xδ). Then
I∗(Xδ) = ∅. Note that X has no derived length. Then Xδ 6= ∅. It follows that
X is not I-scattered, a contradiction. �

5. Some properties of I-scattered spaces

In this section we will give some properties of I-scattered spaces.

5.1. Simple properties of I-scattered spaces

Theorem 5.1. Let (X, τ, I) and (X, τ,J ) be two ideal spaces.

(1) If I ⊂ J and (X, τ, I) is I-scattered, then (X, τ,J ) is J -scattered.

(2) If τ ⊂ σ and (X, τ, I) is I-scattered, then (X, σ, I) is I-scattered.

Proof. These hold by Proposition 3.3 and Proposition 3.4. �

Theorem 5.2. Let (X, τ) be a space. The following are equivalent.

(1) (X, τ) is scattered.

(2) (X, τ, {∅}) is {∅}-scattered.
(3) (X, τ, I) is I-scattered for any ideal I on X.

Proof. (1) ⇒ (3) follows from Proposition 3.2(2).
(3) ⇒ (2) is obvious.
(2) ⇒ (1) Since τ∗ = τ whenever I = {∅}, I(A) = I∗(A) 6= ∅. Thus (X, τ)

is scattered. �

Theorem 5.3. Let (X, τ, I) be an ideal space and let Y ∈ 2X − {∅}. If X is

I-scattered, then (Y, τY , IY ) is IY -scattered.

Proof. Let A ∈ 2Y − {∅}. Since X is I-scattered, I∗(A) 6= ∅. Pick x ∈ I∗(A).
Then U ∩ A = {x} for some U ∈ τ∗(x). Note that U ∩ Y ∈ τ∗Y (x) and
(U ∩ Y ) ∩ A = (U ∩ A) ∩ Y = {x}. Then x ∈ I∗Y (A) and so I∗Y (A) 6= ∅. Hence
(Y, τY , IY ) is IY -scattered. �

5.2. I-scatteredness and topological sums

Lemma 5.4 ([5]). If every Iα is an ideal on Xα (α ∈ Γ), then {
⋃

α∈Γ Iα : Iα ∈
Iα} is an ideal of

⋃

α∈ΓXα.

Let {(Xα, τα, Iα) : α ∈ Γ} be a family of pairwise disjoint ideal spaces, i.e.,
Xα ∩Xβ = ∅ for α 6= β.

Put

X =
⋃

α∈Γ

Xα,

τ = {A ⊂ X : A ∩Xα ∈ τα for each α ∈ Γ}
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and
I = {

⋃

α∈Γ

Iα : Iα ∈ Iα}.

It is easy to prove that τ is a topology on X and every Xα is clopen in
X . By Lemma 5.4, (X, τ, I) is an ideal space, which is said to be the sum of
{(Xα, τα, Iα) : α ∈ Γ}. We also denote it by

⊕

α∈Γ Xα.

Lemma 5.5. Let (X, τ, I) be the sum of {(Xα, τα, Iα) : α ∈ Γ} and let A ⊂ X.

Then A ∈ τ∗′ if and only if A ∩Xα ∈ τ∗′α for each α ∈ Γ.

Proof. (Necessity) Suppose A ∈ τ∗′. It suffices to show (A ∩ Xα)
∗(Iα, τα) ⊂

A ∩Xα.
Suppose (A∩Xα)

∗(Iα, τα) 6⊂ A∩Xα. Then (A∩Xα)
∗(Iα, τα)−A∩Xα 6= ∅.

Pick x0 ∈ (A∩Xα)
∗(Iα, τα)−A∩Xα. Since x0 ∈ (A ∩Xα)

∗(Iα, τα), x0 ∈ Xα

and U∩(A∩Xα) 6∈ Iα for each U ∈ τα(x0). Note that x0 6∈ A∩Xα and A ∈ τ∗′.
Then x0 6∈ A = c∗(A) = A ∪ A∗ and so x0 6∈ A∗(I, τ). Thus U0 ∩ A ∈ I for
some U0 ∈ τ(x0). This implies U0 ∩ A =

⋃

β∈Γ Iβ where Iβ ∈ Iβ . Then

(U0 ∩ A) ∩Xα = (
⋃

β∈Γ

Iβ) ∩Xα = (Iα ∩Xα) ∪ (
⋃

β 6=α

(Iβ ∩Xα)) = Iα ∈ Iα.

Since U ∩ (A∩Xα) 6∈ Iα for each U ∈ τα(x0), a contradiction. Hence A∩Xα ∈
τ∗′α.

(Sufficiency) Let A ∩Xα ∈ τ∗′α for each α ∈ Γ. Now we prove A∗ ⊂ A.
Suppose A∗ −A 6= ∅. Pick x0 ∈ A∗ −A. We have x0 6∈ A and U ∩A 6∈ I for

each U ∈ τ(x0). Since x0 ∈ U = U ∩ X = U ∩ (
⋃

α∈Γ Xα) =
⋃

α∈Γ(U ∩ Xα),
x0 ∈ U ∩Xβ ∈ τβ for some β ∈ Γ. Then U ∩Xβ ∈ τβ(x0).

Claim. x0 ∈ (A ∩Xβ)
∗(Iβ , τβ).

Suppose x0 6∈ (A ∩Xβ)
∗(Iβ , τβ). Then (A ∩ Xβ) ∩W ∈ Iβ for some W ∈

τβ(x0). Note that W ⊂ Xβ. Then A∩W = (A∩Xβ)∩W and so A∩W ∈ Iβ .
Obviously, W ∈ τ(x0). Since ∅ ∈ Iα (α ∈ Γ), A ∩W ∈ I. Since A ∩ U 6∈ I for
any U ∈ τ(x0), a contradiction. Thus x0 ∈ (A ∩Xβ)

∗(Iβ , τβ).
Now A∩Xβ ∈ τ∗β

′. By hypothesis, we have (A∩Xβ)
∗(Iβ , τβ) ⊂ A∩Xβ ⊂ A.

This implies x0 ∈ A, a contradiction. �

Lemma 5.6. Let (X, τ, I) be the sum of {(Xα, τα, Iα) : α ∈ Γ}. Then for

A ⊂ X, A ∈ τ∗ if and only if A ∩Xα ∈ τ∗α for each α ∈ Γ.

Proof. This holds by Lemma 5.5. �

Theorem 5.7. Let (X, τ, I) be the sum of {(Xα, τα, Iα) : α ∈ Γ}. Then

(X, τ, I) is I-scattered if and only if (Xα, τα, Iα) is Iα-scattered for each α ∈ Γ.

Proof. (Sufficiency) Let A ∈ 2X−{∅}. Since A =
⋃

α∈Γ(A∩Xα), A∩Xβ 6= ∅ for
some β ∈ Γ. By Xβ is Iβ-scattered, I

∗
Xβ

(A ∩Xβ) 6= ∅. Pick x ∈ I∗Xβ
(A ∩Xβ).

Then there exists U ∈ τ∗β(x) such that U ∩ (Xβ ∩A) = {x} = U ∩ A. Since

U ∩Xα =

{

U ∈ τ∗β , α = β,

∅ ∈ τ∗α, α 6= β,
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by Lemma 5.6, U ∈ τ∗(x). This implies x ∈ I∗(A). Then I∗(A) 6= ∅. Thus
(X, τ, I) is I-scattered.

(Necessity) Obviously, τXα
= τα and IXα

= Iα for any α ∈ Γ. By Theorem
5.3, every (Xα, τα, Iα) is Iα-scattered. �

5.3. I-scatteredness and I-irresolvableness

Definition 5.8 ([7]). An ideal space (X, τ, I) is called I-resolvable if X has
two disjoint I-dense subsets. Otherwise, X is called I-irresolvable.

Theorem 5.9. Let (X, τ, I) be an ideal space. If X is I-scattered, then X is

I-irresolvable.

Proof. For any A,B ∈ 2X − {∅} with A∗ = B∗ = X and X = A ∪B, we have
A,B ∈ D∗(X). By Theorem 4.5, A,B ⊃ I∗(X). Then A ∩ B ⊃ I∗(X). Since
X is I-scattered, I∗(X) 6= ∅. So A ∩B 6= ∅. Thus, X is I-irresolvable. �

Example 5.10. I-irresolvable 6=⇒ I-scattered.
Let X = R, τ = {∅, X, {0}}, I = {∅, {0}}. Then (X, τ, I) is an ideal space.
(1) Claim 1. 0 6∈ A∗ for any A ∈ 2X .
Obviously, {0} ∈ τ(0). By {0} ∩ A = ∅ ∈ I or {0} ∩ A = {0} ∈ I, we have

0 6∈ A∗. Then 0 6∈ A∗ for any A ∈ 2X .
This implies that for any A,B ∈ 2X − {∅}, A∗ 6= X and B∗ 6= X . Thus X

is I-irresolvable.
(2) Claim 2. {a}∗ = X − {0} when a ∈ X − {0}.
By Claim 1, 0 6∈ {a}∗. Then {a}∗ ⊂ X − {0}. Conversely, for any x ∈

X−{0} and U ∈ τ(x), τ(x) = {X}, we have U = X . Since U ∩{a} = {a} 6∈ I,
x ∈ {a}∗. Then X − {0} ⊂ {a}∗. Thus {a}∗ = X − {0}.

Claim 3. A∗ = X − {0} when A ∈ 2X − {∅, {0}}.
ByClaim 1, 0 6∈ A∗. Then A∗ ⊂ X−{0}. Conversely, by A ∈ 2X−{∅, {0}},

A ∩ (X − {0}) 6= ∅. Pick a ∈ A ∩ (X − {0}). Then A∗ ⊃ {a}∗. By Claim

2, {a}∗ = X − {0}. This implies A∗ ⊃ X − {0}. Thus A∗ = X − {0} when
A ∈ 2X − {∅, {0}}.

Claim 4. τ∗′ = {∅, X, {0}, X − {0}}.
Obviously, {0}∗ = ∅. Then {0} ∈ τ∗′. Let A ∈ 2X − {∅, X, {0}, X − {0}}.

By Claim 3, A∗ = X −{0}. This implies c∗A = X −{0} 6= A. Then A 6∈ τ∗′.
Thus τ∗′ = {∅, X, {0}, X − {0}}.

Put B = {1, 2}. By Claim 4, τ∗ = {∅, X, {0}, X − {0}}. Then τ∗(1) =
{X,X−{0}}. Let x ∈ X . (a) x ∈ X−B. Then x 6∈ I∗(B) since I∗(B) ⊂ B. (b)
x ∈ B. Let U ∈ τ∗(x). Since τ∗(1) = τ∗(2) = {X,X−{0}}, U ∩B = B 6= {x}.
Then x 6∈ I∗(B). Thus, I∗(B) = ∅. This shows that X is not I-scattered.

5.4. Mapping properties of I-scattered spaces

In this subsection we study the ∗-closed continuous images of I-scattered
spaces.
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Definition 5.11 ([8]). A mapping f : (X, τ, I) → (Y, σ,J ) is called ∗-closed,
if f(A) is ∗-closed in Y for each ∗-closed subset A of X .

Theorem 5.12. Let (X, τ, I) be I-scattered, let (Y, σ,J ) be an ideal space and

let f : (X, τ, I) → (Y, σ,J ) be ∗-closed. Suppose that f satisfies the following

condition (∗):

The set {β : Xβ ∩ f−1(y) 6= ∅} contains a largest element for any y ∈ Y.

Then the following properties hold:
(i) Y α ⊂ f(Xα) for every ordinal number α,

(ii) δ(Y ) 6 δ(X),
(iii) Y is J -scattered.

Proof. Since (ii) and (iii) hold by (i) and Theorem 4.11, we only need to prove
(i), i.e., Y α ⊂ f(Xα) for any ordinal number α.

We use induction on α.
(1) Since Y 0 = Y = f(X) = f(X0), then Y α ⊂ f(Xα) when α = 0.
(2) Suppose Y β ⊂ f(Xβ) when β < α. It suffices to show Y α ⊂ f(Xα) in

the following two cases.
1) α = β + 1 for some ordinal number β.
Suppose Y α 6⊂ f(Xα). Then Y α − f(Xα) 6= ∅. Pick

y ∈ Y α − f(Xα).

Then Xα ∩ f−1(y) = ∅. Put F = Xβ − f−1(y).
Claim 1. F is ∗-closed in X .
Put A = Xβ ∩ f−1(y). Then F = Xβ − A. Since Xα ∩ f−1(y) = ∅,

f−1(y) ⊂ X −Xα. This implies A ⊂ Xβ ∩ (X −Xα) = Xβ −Xα. By Remark
4.7, Xβ−Xα = I∗(Xβ). Thus A ⊂ I∗(Xβ). For any x ∈ A, x ∈ I∗(Xβ). Then
U ∩Xβ = {x} for some U ∈ τ∗(x). Then {x} ∈ τ∗

Xβ and so A =
⋃

x∈A{x} ∈

τ∗
Xβ . This implies F = Xβ −A ∈ τ∗′Xβ . By Lemma 4.9(1), F is ∗-closed in X .

By induction hypothesis, Y β ⊂ f(Xβ). Then Y β − {y} ⊂ f(Xβ) − {y}.
Note that Xβ ⊂ F ∪ f−1(y). Then Y β − {y} ⊂ f(F ∪ f−1(y)) − {y} = f(F ).
Thus Y β − f(F ) ⊂ {y}.

Conversely, by f−1(y) ∩ F = ∅, y 6∈ f(F ). Note that y ∈ Y α ⊂ Y β . Then
{y} ⊂ Y β − f(F ).

Hence Y β − f(F ) = {y}.
Since f is ∗-closed, by Claim 1, f(F ) ∈ σ∗′. Note that y 6∈ f(F ). Put

U = Y − f(F ). Then U ∈ σ∗(y). By U ∩ Y β = Y β − f(F ) = {y}, y ∈ I∗(Y β).
By Remark 4.7, Y β − Y α = I∗(Y β). This implies y 6∈ Y α, a contradiction.

Therefore, Y α ⊂ f(Xα).
2) α is a limit ordinal number.
Suppose Y α 6⊂ f(Xα). Then Y α − f(Xα) 6= ∅. Pick

y ∈ Y α − f(Xα).

Put
π = max{β : Xβ ∩ f−1(y) 6= ∅}.
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By condition (∗), we have Xπ ∩ f−1(y) 6= ∅.
Since Xα ∩ f−1(y) = ∅, we claim π < α. Otherwise, we have π > α. Since

Xπ ∩ f−1(y) 6= ∅ and Xπ ⊂ Xα, Xα ∩ f−1(y) 6= ∅. Thus y ∈ f(Xα), a
contradiction.

But Xπ+1 ∩ f−1(y) = ∅. Then {y} ∩ f(Xπ+1) = ∅ and so f−1(y) ∩
f−1(f(Xπ+1)) = ∅.

Put

W = X − f−1(f(Xπ+1)).

Then f−1(y) ⊂ W . By Lemma 4.9(1),Xπ+1 ∈ τ∗
′

. By f is ∗-closed, f(Xπ+1) ∈

σ∗′

.
Put

Z = Y − f(Xπ+1).

Then Z ∈ σ∗ and W = f−1(Z). Put g = f |W .
Claim 2. g : W → Z is ∗-closed.
Let K be ∗-closed in W . Then K = F ∩ W for some F ∈ τ∗′. Since f is

∗-closed, f(F ) ∈ σ∗′. Note that

g(K) = f(W ∩ F ) = f(f−1(Z) ∩ F ) = Z ∩ f(F ).

Then g(K) is ∗-closed in Z.
Since X is I-scattered, by Theorem 5.3, W is IW -scattered. By Theorem

4.11, δ(W ) is existence.
Claim 3. δ(W ) 6 π + 1.
Wπ+1 ⊂ W ⊂ X−Xπ+1. By Lemma 4.9(2), Xπ+1 ⊃ Wπ+1. Then Wπ+1 ⊂

Xπ+1 ∩ (X −Xπ+1) = ∅. Thus δ(W ) 6 π + 1.
Claim 4. Y α ∩ Z = Zα.
(a) α = 0. We have Z0 = Z = Y ∩ Z = Y 0 ∩ Z.
(b) Suppose Y β ∩ Z = Zβ for any β < α. We will prove Y α ∩ Z = Zα in

the following cases.
a) α is a successor ordinal number.
By induction hypothesis, Y α−1 ∩ Z = Zα−1.
By Y α ⊃ Zα and Z ⊃ Zα, we have Y α ∩ Z ⊃ Zα.
Let y ∈ Y α ∩ Z. By Remark 4.7, Y α = Y α−1 ∩ d∗(Y α−1). Then y ∈

d∗(Y α−1)∩Y α−1∩Z = d∗(Y α−1)∩Zα−1. Note that Z ∈ σ∗(y). y ∈ d∗(Y α−1)
implies (U ∩ Z) ∩ (Y α−1 − {y}) 6= ∅ for any U ∈ σ∗(y). Then

(U ∩ Z) ∩ (Y α−1 − {y}) = U ∩ Z ∩ Y α−1 ∩ {y}c

= U ∩ Zα−1 ∩ {y}c = U ∩ (Zα−1 − {y}) 6= ∅.

Thus, y ∈ d∗(Zα−1). By Remark 4.7,

Zα = Zα−1 ∩ d∗(Zα−1).

Then y ∈ Zα. Hence Y α ∩ Z ⊂ Zα.
Hence Y α ∩ Z = Zα.
b) α is a limit ordinal number.
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By induction hypothesis, Y β ∩ Z = Zβ for any β < α. Then

Y α ∩ Z = (
⋂

β<α

Y β) ∩ Z =
⋂

β<α

(Y β ∩ Z) =
⋂

β<α

Zβ = Zα.

By Claim 2, g : W → Z is ∗-closed. Repeat the proof of 1), we can prove
Zπ+1 ⊂ g(Wπ+1). By Claim 3, ∅ = W δ(W ) ⊃ Wπ+1. This implies Zπ+1 = ∅.
By Remark 4.7(4), Z =

⋃

β6π I
∗(Zβ).

Note thatXπ+1∩f−1(y) = ∅. Then y 6∈ f(Xπ+1). So y ∈ Z =
⋃

β6π I
∗(Zβ).

We obtain y ∈ I∗(Zγ) for some γ 6 π. It follows U ∩ Zγ = {y} for some
U ∈ σ∗(y).

By Claim 4, Y γ ∩ Z = Zγ . Then (U ∩ Z) ∩ Y γ = U ∩ Zγ = {y}. Since
U ∩ Z ∈ σ∗(y), we have y ∈ I∗(Y γ) = Y γ − Y γ+1. Then y 6∈ Y γ+1.

Since π < α and α is a limit ordinal, π + 1 < α. Then γ + 1 6 π + 1 < α.
By Remark 4.7, Y γ+1 ⊃ Y α. Then y 6∈ Y α, a contradiction.

Therefore, Y α ⊂ f(Xα). �

Corollary 5.13. Let (X, τ, I) be I-scattered, let (Y, σ,J ) be an ideal space and

let f : (X, τ, I) → (Y, σ,J ) be ∗-closed. If δ(X) is finite, then the following

properties hold:
(i) Y α ⊂ f(Xα) for every ordinal number α,

(ii) δ(Y ) 6 δ(X),
(iii) Y is J -scattered.
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