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CONVEX SOLUTIONS OF THE POLYNOMIAL-LIKE

ITERATIVE EQUATION ON OPEN SET

Xiaobing Gong

Abstract. Because of difficulty of using Schauder’s fixed point theorem
to the polynomial-like iterative equation, a lots of work are contributed
to the existence of solutions for the polynomial-like iterative equation on
compact set. In this paper, by applying the Schauder-Tychonoff fixed
point theorem we discuss monotone solutions and convex solutions of the
polynomial-like iterative equation on an open set (possibly unbounded)
in RN . More concretely, by considering a partial order in RN defined
by an order cone, we prove the existence of increasing and decreasing

solutions of the polynomial-like iterative equation on an open set and
further obtain the conditions under which the solutions are convex in the
order.

1. Introduction

As indicated in the books [7, 19] and the surveys [3, 24], the polynomial-like
iterative equation

λ1f(x) + λ2f
2(x) + · · ·+ λnf

n(x) = F (x), x ∈ S,(1.1)

where S is a subset of a linear space over R, F : S → S is a given function,
λis (i = 1, . . . , n) are real constants, f : S → S is the unknown function
and f i is the ith iterate of f , i.e., f i(x) = f(f i−1(x)) and f0(x) = x for all
x ∈ S, is one of important forms of functional equation since it is the basic
form of iterative functional equation and the problem of iterative roots and
the problem of invariant curves can be reduced to the kind of equations. For
S ⊂ R, while some works (e.g. [4, 6, 12, 13, 14, 17, 22]) are contributed to
the case of linear F , there are given many results to the case of nonlinear F ,
for example, [11, 29] for n = 2, [25] for general n, [10, 26] for smoothness, [16]
for analyticity. Some efforts were also devoted to Eq.(1.1) in high-dimensional
spaces such as in [27], radially monotonic solutions were discussed in high-
dimensional Euclidean spaces by properties of orthogonal group. Later, also in
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high-dimensional Euclidean spaces, the existence of Lipschitzian solutions were
investigated for the case n = ∞ on a compact convex subset of RN , N > 1 in
[9]. In 2004, [9] were partially generalized to an arbitrary closed (not necessarily
convex) subset of a Banach space in [18].

Convexity is one of important properties of functions and is often used in op-
timization, mathematical programming and game theory. The study of convex-
ity for iterative equations can be traced to 1968, when Kuczma and Smajdor [8]
investigated the convexity of iterative roots. Some recent results can be found
from [20, 21, 28] in 1-dimensional space and in high-dimensional spaces one can
refer to [5]. In [28], convex solutions and concave ones of Eq.(1.1) were dis-
cussed under the normalization condition:

∑n
j=1 λj = 1 on a compact interval.

More concretely, the existence and uniqueness of convex (resp. concave) solu-
tions with uniform non-positiveness of λ2, . . . , λn and increasing convex (resp.
concave) with uniform non-negativeness of λ2, . . . , λn are proved. And as a
continuation of [28], increasing convex (or concave) solutions and decreasing
convex (or concave) solutions of Eq.(1.1) are completely investigated with no
normalization condition and no requirement of uniform sign of coefficients on
a compact interval in [21]. In [20], nondecreasing convex solutions for Eq.(1.1)
on open intervals (possibly unbounded) were discussed. For high-dimensional
spaces, by considering a partial order, which is defined by an order cone, the
existence of increasing convex (concave) solutions of Eq.(1.1) on a compact
subset of Banach spaces were proved in [5].

In this paper, motivated by [20], we consider Eq.(1.1) on an open set (possi-
bly unbounded) in RN . Through defining a separating family of seminorms on
a continuous function space which becomes a locally convex space and consid-
ering compact convergence topology on this locally convex function space and
by applying the Schauder-Tychonoff fixed point theorem (see the Appendix),
we discuss monotone solutions and convex solutions of polynomial-like iterative
equation on an open set in RN . More concretely, as in [5], we consider a partial
order in RN , which is defined by an order cone, and give existence of increasing
solutions and decreasing solutions in this ordered space. Then we further give
conditions under which those solutions are convex or concave.

2. Preliminaries

As indicated in the Introduction, in order to discuss monotonicity and con-
vexity of solutions for Eq.(1.1) on an open set in RN , we need to introduce an
order in RN . For convenience, we use the conventions of [5].

As in [23], a nonempty subset K of a real vector space X is called a cone if
x ∈ K implies that ax ∈ K for all a > 0. A nonempty and nontrivial subset
K ⊂ X is an order cone if K is a convex cone and satisfies K ∩ (−K) = {θ},
where θ denotes the zero element of X . Having chosen such an order cone K
in X , we can define a partial order x ≤K y in X , simply called the K-order, if

y − x ∈ K.
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After introducing a K-order, one can define ordered vector spaces, ordered
real Banach spaces and normal order cones as in [2]. A real vector space X
equipped with a K-order is called an ordered vector space, denoted by (X,K).
A real Banach space (X, ‖ · ‖) associated with a K-order is called an ordered
real Banach space, denoted by (X,K, ‖ · ‖), if K is closed. An order cone K in
an ordered real Banach space (X,K, ‖ · ‖) is said to be normal if there exists
a constant N > 0 such that ‖x‖ ≤ N‖y‖ if θ ≤K x ≤K y in X . The smallest
constant N , denoted by N(K), is called the normal constant of K.

In an ordered real vector space (X,K) one can define increasing (decreasing)
operators and convex (concave) operators as in [2]. An operator f : D ⊂ X →
X is said to be increasing (resp. decreasing) in the sense of the K-order if
x ≤K y implies f(x) ≤K f(y) (resp. f(x) ≥K f(y)). An operator f : D → X ,
where D ⊂ X is a convex subset, is said to be convex (resp. concave) in
the sense of the K-order if f(λx + (1 − λ)y) ≤K λf(x) + (1 − λ)f(y) (resp.
f(λx + (1 − λ)y) ≥K λf(x) + (1 − λ)f(y)) for all λ ∈ [0, 1] and for every pair
of distinct comparable points x, y ∈ D (i.e., either x ≤K y or x ≥K y).

Let Ω be an open convex subset of (RN ,K, ‖ · ‖) with nonempty interior,
where ‖ ·‖ is Euclidean norm and C(Ω,RN ) consists of all continuous functions
f : Ω → RN . Then there exists a sequence Ω1,Ω2, . . . of compact subsets of Ω
such that

Ω =

∞
⋃

n=1

Ωn and Ωn ⊂ intΩn+1 for every n ∈ N.

For every positive integer n, let pn : C(Ω,RN ) → R be the function defined by

pn(f) := sup
x∈Ωn

‖f(x)‖.

Then P := (pn)n∈N is a separating family of seminorms on the vector space
C(Ω,RN ). Since p1 ≤ p2 ≤ · · · , in accordance with Theorem 1.37 in [15], the
sets

Vn = {f ∈ C(Ω, X) : pn(f) <
1

n
} (n = 1, 2, 3, . . .)

form a convex local base for C(Ω,RN ), which turns C(Ω,RN ) into a locally
convex topological space. According to remark (c) of Section 1.38 in [15], the
topology of C(Ω,RN ) is compatible with the metric

d(f, g) = max
n∈N

2−npn(f − g)

1 + pn(f − g)
.

Moreover, the metrizable locally convex space (C(Ω,RN ), d) is complete. We
now prove that this topology of C(Ω,RN ) is compact convergence topology.
We need the following lemma.

Lemma 2.1. Let S be a subset of a topology space. Let S =
⋃

∞

n=1 Sn and

Sn ⊂ intSn+1 for every n ∈ N. Then for every compact subset A of S, there
exists a N ∈ N such that A ⊂ SN .
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Proof. If A * Sn, then for n ∈ N there exists xn ∈ A such that xn /∈ Sn.
Hence we have a sequence {xn} such that {xn} ⊆ A and xn /∈ Sn for every
n ∈ N. Compactness of A implies that {xn} has a convergence subsequence
{xnk

}. Let limk→∞ xnk
= x0, then x0 ∈ A. Hence x0 ∈ S. Since S =

⋃

∞

n=1 Sn,
there exists a N ∈ N such that x0 ∈ SN . Consequently, x0 ∈ intSN+1. So
there exists a neighbourhood U(x0) of x0 such that there exists xnJ

∈ U(x0)
(nJ > N + 1) and U(x0) ⊆ SN+1. So xnJ

∈ SN+1, which contradicts with
xnJ

/∈ SnJ
. We complete the proof. �

Suppose {fj} ⊆ C(Ω,RN ) and fj → f ∈ C(Ω,RN )(j → ∞) with respect
to metric d, then for every integer n, pn(fj − f) → 0(j → ∞). By Lemma
2.1, {fj} converges uniformly to f on every compact subset of Ω. Conversely,
if {fj} ⊆ C(Ω,RN ) converges uniformly to f ∈ C(Ω,RN ) on every compact
subset of Ω, then {fj} converges uniformly to f on Sn(n ∈ N). This implies
that fj → f(j → ∞) with respect to metric d. Consequently, the topology of
C(Ω,RN ) is compact convergence topology.

Let Ω0 ⊂ Ω be a given compact convex subset of RN . For 0 ≤ m ≤ M <
+∞, define

C+(Ω,m,M) := {f ∈ C(Ω,RN ) : f(Ω) ⊂ Ω0 ⊂ Ω,

m(y − x) ≤K f(y)− f(x) ≤K M(y − x) if x ≤K y, and

‖f(y)− f(x)‖ ≤ M‖y − x‖ if x and y are not comparable},

C−(Ω,m,M) := {f ∈ C(Ω,RN ) : f(Ω) ⊂ Ω0 ⊂ Ω,

m(y − x) ≤K f(x)− f(y) ≤K M(y − x) if x ≤K y, and

‖f(y)− f(x)‖ ≤ M‖y − x‖ if x and y are not comparable},

C+
cv(Ω,m,M) := {f ∈ C+(Ω,m,M) : f is convex on Ω in K-order},

C+
cc(Ω,m,M) := {f ∈ C+(Ω,m,M) : f is concave on Ω in K-order},

C−

cv(Ω,m,M) := {f ∈ C−(Ω,m,M) : f is convex on Ω in K-order},

C−

cc(Ω,m,M) := {f ∈ C−(Ω,m,M) : f is concave on Ω in K-order}.

Lemma 2.2. Let (RN ,K, ‖ · ‖) be an ordered real Banach space such that K is

normal. Then the above defined C+(Ω,m,M), C−(Ω,m,M), C+
cv(Ω,m,M) and

C+
cc(Ω,m,M) are compact convex subsets of C(Ω,RN ) with respect to compact

convergence topology for any 0 ≤ m ≤ M < +∞.

Proof. We only prove that C+(Ω,m,M) and C+
cv(Ω,m,M) are compact convex

subsets of C(Ω,RN ) with respect to compact convergence topology. It will be
similar for C−(Ω,m,M) and C+

cc(Ω,m,M). We first consider C+(Ω,m,M).
Let Ξ be any compact subset of Ω and {fi} ⊂ C+(Ω,m,M). We prove that
{fi} has a subsequence which is uniformly convergent on Ξ. By Lemma 2.1,
it is sufficient to claim it on every Ωn(n = 1, 2, . . .). We use diagonal argu-
ment to prove it. Similar to Lemma 2.2 in [5] one can prove that {fi} has a
convergent subsequence with respect to sup norm on Ω1 by Ascoli’s Theorem,
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which is denoted by {f1,k}|
∞

k=1. Similarly, {f1,k}|
∞

k=1 has a convergent subse-
quence {f2,k}|

∞

k=1 with respect to sup norm on Ω2. Proceeding in this fashion
we obtain a countable collection of subsequences of the original sequence:

f1,1 f1,2 f1,3 · · · f1,k · · · ,
f2,1 f2,2 f2,3 · · · f2,k · · · ,
· · · · · · · · · · ,

fn,1 fn,2 fn,3 · · · fn,k · · · ,
· · · · · · · · · · ,

where the sequence in the n-th row is uniform convergence on Ωn, and each row
is a subsequence of the one above it. Thus the diagonal sequence {fn,n}

∞

n=1 is
a subsequence of the original sequence {fi} and {fn,n}|

∞

n=1 is uniform conver-
gence on Ωj (j = 1, 2, . . .). In fact, for any Ωj , {fj,k}|

∞

k=1 is uniform convergence
on Ωj and {fn,n}|

∞

n=j is the subsequence of {fj,k}|
∞

k=1. Hence {fn,n}|
∞

n=j is uni-

form convergence on Ωj , which implies that {fn,n}|
∞

n=1 uniformly converge on
Ωj (j = 1, 2, . . .). Consequently, we have proved that C+(Ω,m,M) is relatively
compact with respect to compact convergence topology.

Furthermore, we prove that C+(Ω,m,M) is a closed subset of C(Ω,RN ) with
respect to compact convergence topology. Let {fi} ⊂ C+(Ω,m,M) be such a
sequence that limi→∞ fi = f in C(Ω,RN ), i.e., {fi} converges uniformly on Ωn

to f . Hence

(2.1) lim
i→∞

‖fi(x) − f(x)‖ = 0, ∀x ∈ Ωn, n = 1, 2, . . . .

For any x, y ∈ Ω, there exists Ωj such that x, y ∈ Ωj . Similar to Lemma 2.2 in
[5] and by (2.1), we have

m(y − x) ≤K f(y)− f(x) ≤K M(y − x)

if x ≤K y and

‖f(y)− f(x)‖ ≤ M‖y − x‖

if x and y are not comparable. At last, we can prove that f(Ω) ⊂ Ω0 ⊂ Ω
because fi(Ω) ⊂ Ω0 and Ω0 is a compact set. Obviously, f ∈ C(Ω,RN ). Thus,
we have proved that C+(Ω,m,M) is a closed set and therefore a compact subset
of C(Ω,RN ).

The proof of convexity of C+(Ω,m,M) is similar to Lemma 2.2 in [5]. So
we have proved that C+(Ω,m,M) is a compact convex subset of C(Ω,RN ).

The proof for C+
cv(Ω,m,M) is similar to Lemma 2.2 in [5]. The proof is

completed. �

Lemma 2.3. Let Y be the set consisting of all functions f ∈ C(Ω,RN ) such

that f(Ω) ⊆ Ω and f is Lipschitz on Ω. Furthermore, let F ∈ C(Ω,RN ), let
α1, α2, . . . , αn ∈ R, and let L : Y → C(Ω,RN ) be the operator defined by

(Lf)(x) := α1F (x) + α2f
2(x) + · · ·+ αnf

n(x)

for every f ∈ Y and each x ∈ Ω. Then L is continuous on Y .
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Proof. Fix any f ∈ Y and let V be any neighbourhood of Lf in C(Ω,RN ).
Choose l ∈ N such that Lf + Vl ⊆ V. Since f is continuous and Ωl is a
compact subset of Ω, it follows that f j(Ωl) is a compact subset of Ω for every
j ∈ {0, 1, . . . , n}. Set E =

⋃n
j=0 f

j(Ωl). By Lemma 2.1, there exists Ωm

such that E ⊆ Ωm. Let λ ≥ 0 be the Lipschitz constant of f on Ω. Let

r = max {m, k}, where k is a integer such that k > l
∑n

j=2 |αj |
∑j−1

i=0 λi. Let

U := (f + Vr)
⋂

Y . Clearly, U is a neighbourhood of f in Y . We will prove
L(U) ⊆ Lf + Vl. For any g ∈ U , Lg ∈ C(Ω,RN ) and pr(f − g) < 1

r . Note that
Ωl ⊆ Ωr. Hence

pl((Lf)− (Lg)) ≤ pr((Lf)− (Lg))

≤
1

r

n
∑

j=2

|αj |

j−1
∑

i=0

λi

≤
1

k

n
∑

j=2

|αj |

j−1
∑

i=0

λi

≤
1

l
, ∀x ∈ Ωl.

Consequently, Lg ∈ Lf + Vl, which implies L(U) ⊆ V . We complete the proof
of continuity of L at f . �

3. Increasing and decreasing solutions

Before discussing convexity, we prove the existence of increasing and decreas-
ing solutions of Eq.(1.1) in the ordered real Banach space (RN ,K, ‖ · ‖) such
that K is normal and N(K) ≤ 1. First, we investigate increasing solutions.
Consider Eq.(1.1) with the following hypotheses:

(H1) λ1 > 0, λi ≤ 0, i = 2, 3, . . . , n, and
(H2) the normalization condition

∑n
i=1 λi = 1.

Theorem 3.1. Suppose that (H1) and (H2) hold and F ∈ C+(Ω, 0,M1), where
M1 ∈ (0,+∞) is a constant. If

M1 ≤ λ1M + λ2M
2 + · · ·+ λnM

n(3.1)

for a constant M ∈ [0,+∞), then Eq.(1.1) has a solution f ∈ C+(Ω, 0,M).

Proof. Under the hypothesis (H1) and (H2), we can rewrite Eq.(1.1) as

f(x) =
1

λ1
F (x) −

λ2

λ1
f2(x) − · · · −

λn

λ1
fn(x), x ∈ Ω,

where

1

λ1
−

n
∑

i=2

λi

λ1
= 1.
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Define a mapping L : C+(Ω, 0,M) → C(Ω,RN ) by

(3.2) Lf(x) =
1

λ1
F (x) −

λ2

λ1
f2(x) − · · · −

λn

λ1
fn(x).

We first prove that L satisfies L(C+(Ω, 0,M)) ⊂ A ⊂ C+(Ω, 0,M) with A
compact. Similar to Lemma 2.2 in [5], we have

‖f(x)− f(y)‖ ≤ M0‖x− y‖, ∀x, y ∈ Ω, ∀f ∈ C+(Ω, 0,M),

which implies that f is Lipschitz on Ω, where M0 = max{M,MN(K)}. By
definition of C+(Ω, 0,M), f(Ω) ⊂ Ω. Hence, by Lemma 2.3 L is contin-
uous on C+(Ω, 0,M). By inequality (3.1), similar to Theorem 3.1 in [5],
L(C+(Ω, 0,M)) ⊂ C+(Ω, 0,M). As Lemma 2.2 guarantees that C+(Ω, 0,M)
is a convex subset of the Hausdorff locally convex linear topological space
C(Ω,RN ), by Schauder-Tychonoff fixed point theorem we see that L has a
fixed point f ∈ C+(Ω, 0,M). Thus f is an increasing solution of the equation.
The proof is completed. �

The following is devoted to decreasing solutions. The proof is similar to
Theorem 3.1 by using the same arguments as in Theorem 3.2 in [5], we only
show the result but omit it.

Theorem 3.2. Suppose that (H1) and (H2) hold and all coefficients of even

order iterates in Eq.(1.1) are equal to 0. Let F ∈ C−(Ω, 0,M1), where M1 ∈
(0,+∞) is a constant. If the condition (3.1) holds for a constant M ∈ (0,+∞),
then Eq.(1.1) has a solution f ∈ C−(Ω, 0,M).

4. Convexity of solutions

On the basis of last section we can discuss on convexity of continuous solu-
tions for Eq.(1.1) in the ordered real Banach space (RN ,K, ‖ · ‖) with a normal
cone K and N(K) ≤ 1.

Theorem 4.1. Suppose that (H1) and (H2) hold and F ∈ C+
cv(Ω, 0,M1), where

M1 ∈ (0,+∞) is a constant. If

M1 ≤ λ1M + λ2M
2 + · · ·+ λnM

n(4.1)

for a constant M ∈ (0,+∞), then Eq.(1.1) has a continuous solution f ∈
C+

cv(Ω, 0,M).

Proof. Define a mapping L : C+
cv(Ω, 0,M) → C(Ω,RN ) as in Theorem 3.1. The

continuity of L was proved in the proof of Theorem 3.1. Use the same argument
as in Theorem 4.1 in [5] we can prove L(C+

cv(Ω, 0,M)) ⊂ C+
cv(Ω, 0,M). Lemma

2.2 guarantees that C+
cv(Ω, 0,M) is a compact convex subset of the Hausdorff

locally convex linear topological space C(Ω,RN ). Therefore, this proof can be
completed by using Schauder-Tychonoff fixed point theorem. �

Similarly, we can prove the following result for concavity of solutions.
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Theorem 4.2. Suppose that (H1) and (H2) hold and F ∈ C+
cc(Ω, 0,M1), where

M1 ∈ (0,+∞) is a constant. If

(4.2) M1 ≤ λ1M + λ2M
2 + · · ·+ λnM

n

for a constant M ∈ (0,+∞), then Eq.(1.1) has a continuous solution f ∈
C+

cc(Ω, 0,M).

Example 4.1. Consider the equation

(4.3)
10

9
f(x1, x2)−

1

9
f2(x1, x2) =

(

−1 + 2x1

1− x1
,
−47 + 16x2

6− 2x2

)

, ∀(x1, x2) ∈ Ω,

where Ω := {(x1, x2) ∈ R2 : x1 < 0, x2 < 0}. Clearly, Eq.(4.3) is of the form
(1.1), where

F (x1, x2) :=

(

−1 + 2x1

1− x1
,
−47 + 16x2

6− 2x2

)

,

λ1 = 10/9 and λ2 = −1/9. Ω is a open convex subset (unbounded) of the
ordered real Banach space (R2,K, ‖ · ‖), where ‖x‖ = (x2

1 + x2
2)

1/2 and K :=
{x = (x1, x2) : x1 ≥ 0, x2 ≥ 0} is a normal order cone and N(K) ≤ 1. One can
check that (H1) and (H2) are satisfied. We further claim that F ∈ C+

cv(Ω, 0, 1).
Let

g(t) =
−1 + 2t

1− t
, h(t) =

−47 + 16t

6− 2t
, t ∈ (−∞, 0).

By simple calculation we have

g′(t) =
1

(1− t)2
, t ∈ (−∞, 0)(4.4)

and

max
t∈(−∞,0)

|g′(t)| ≤ 1.

Hence |g(y1) − g(x1)| ≤ |y1 − x1| for all x1, y1 ∈ (−∞, 0). Similarly, |h(y2) −
h(x2)| ≤

1
18 |y2 − x2| for all x2, y2 ∈ (−∞, 0). Consequently,

‖F (y)− F (x)‖ =
√

(g(y1)− g(x1))2 + (h(y2)− h(x2))2

≤

√

(y1 − x1)2 +
1

324
(y2 − x2)2

≤ ‖y − x‖, ∀x, y ∈ Ω,

(4.5)

which implies that F ∈ C(Ω,RN ). (4.4) implies that g is strictly increasing on
(−∞, 0) and

lim
t→−∞

g(t) = −2, lim
t→0−

g(t) = −1.

Hence g((−∞, 0)) ⊂ (−2,−1). Similarly, h((−∞, 0)) ⊂ (−8,−47/6). So
F (Ω) ⊂ Ω0 := [−2,−1] × [−8,−7] ⊂ Ω, where Ω0 is obviously a compact
convex subset of R2. Note that x ≤K y if and only if y1 − x1 ≥ 0 and
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y2 − x2 ≥ 0. Thus, when x, y ∈ Ω are not comparable (i.e., y − x /∈ K
and x − y /∈ K), we have (4.5); when x, y ∈ Ω are comparable, assume
x ≤K y, then x1 ≤ y1, x2 ≤ y2. Hence 0 ≤ g(y1) − g(x1) ≤ y1 − x1 and
0 ≤ h(y2) − h(x2) ≤ 1

18 (y2 − x2) because g(t), h(t) are strictly increasing on
(−∞, 0) and maxt∈(−∞,0) |g′(t)| ≤ 1,maxt∈(−∞,0) |h′(t)| ≤ 1/18. We calculate

F (y)− F (x) = (g(y1)− g(x1), h(y2)− h(x2)), ∀x, y ∈ Ω,

implying that

θ ≤K F (y)− F (x) ≤K (y − x)

if x ≤K y. By (4.4),

g′′(t) =
1

(1− t)3
, t ∈ (−∞, 0),

which implies that g′′(t) > 0 for all t ∈ (−∞, 0). Hence g(t) is convex on
(−∞, 0) and furthermore

g(λt1 + (1− λ)t2) ≤ λg(t1) + (1− λ)g(t2))(4.6)

for all t1, t2 ∈ (−∞, 0) and λ ∈ [0, 1]. Similarly,

h(λt1 + (1− λ)t2) ≤ λh(t1) + (1− λ)h(t2))(4.7)

for all t1, t2 ∈ (−∞, 0) and λ ∈ [0, 1]. Summarizing (4.6) and (4.7), we get

F (λx+ (1 − λ)y) = (g(λx1 + (1− λ)y1), h(λx2 + (1− λ)y2))

≤K (λg(x1) + (1− λ)g(y1), λh(x2) + (1− λ)h(y2))

= λF (x) + (1− λ)F (y)

for all λ ∈ [0, 1] and every pair of distinct comparable points x, y ∈ Ω, implying
that F (x) is convex in K-order on Ω. Thus the claim is proved. Since

−
1

9
M2 +

10

9
M − 1 = −

1

9
(M − 5)2 +

16

9
≥ 0

for all M ∈ [1, 9], i.e., inequality (4.1) holds for any M ∈ [1, 9], by Theorem 4.1
we see that Eq.(4.3) has a convex solution f ∈ C+

cv(Ω, 0,M).

We end the paper with some remarks. The same difficulties as in [5] are
encountered, hence, we did not discuss decreasing convex (resp. concave) so-
lutions for Eq.(1.1) and the existence of decreasing (resp. increasing) solutions
for given F ∈ C+(Ω, 0,M1) (resp. C−(Ω, 0,M1)) and the existence of in-
creasing convex (resp. concave) solution for given F ∈ C+

cc(Ω, 0,M1) (resp.
C+

cv(Ω, 0,M1)) are not given yet for Eq.(1.1).

Acknowledgment. The author is most grateful to the anonymous referee for
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Appendix: Schauder-Tychonoff Theorem

Schauder-Tychonoff Theorem ([1, Theorem 8.2, p. 96]). Let E be a Haus-

dorff locally convex linear topological space, C a convex subset of E and F :
C → E a continuous mapping such that F (C) ⊆ A ⊆ C with A compact. Then

F has at least one fixed point.
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