DOI QR코드

DOI QR Code

Investigation on the Penetration Resistance of Suction Bucket Foundation in Sand using Model Test

모형실험을 통한 모래지반에서 석션버켓기초의 관입저항력 평가

  • Kim, Keunsoo (Coastal Development & Ocean Energy Research Division, Korea Institute of Ocean Science & Technology) ;
  • Kwon, Osoon (Coastal Development & Ocean Energy Research Division, Korea Institute of Ocean Science & Technology) ;
  • Oh, Myounghak (Coastal Development & Ocean Energy Research Division, Korea Institute of Ocean Science & Technology) ;
  • Jang, Insung (Coastal Development & Ocean Energy Research Division, Korea Institute of Ocean Science & Technology)
  • Received : 2014.03.28
  • Accepted : 2014.05.19
  • Published : 2014.06.01

Abstract

Suction bucket foundation is installed with the differential pressure created by pumping water out of bucket. Bucket foundation has usually been utilized in mooring anchor for offshore platform or floating oil and gas production facilities in the open sea. After suction bucket foundation successfully was applied as the foundation for offshore wind turbines in Europe, it recently attracts much attention in Korea, too. To estimate the penetration resistance of the suction bucket foundation is one of the important matters that should be considered during its installation. This study carried out a series of model tests to investigate the penetration resistance of suction bucket foundation. And the mobilized soil strength factor was reviewed through comparing the experimental results by two installation ways (e.g., push-in-load and suction) and the results calculated by the conventional equation.

석션버켓기초는 펌프로 버켓 내부의 물을 외부로 배출할 때 발생한 압력차로 지반에 설치되는 기초이다. 버켓기초는 외해의 플랫폼이나 석유 가스 시추시설을 계류시키기 위한 앵커로 주로 사용되었으나, 최근 유럽을 중심으로 해상풍력발전의 기초로 적용되기 시작하면서 국내에서도 큰 관심을 받고 있다. 석션버켓기초의 관입저항력 산정은 석션버켓기초를 성공적으로 시공하기위해 고려해야 할 주요 사항 중의 하나이다. 본 연구는 석션버켓기초를 관입시킬 때 필요한 관입력을 평가하기 위해 실내모형실험을 수행하였다. 실내모형실험은 압입설치 및 석션설치에서 측정한 관입저항력을 관입성능평가에서 많이 사용되는 기존의 이론식과 비교하여 강도감소계수의 적절한 범위를 검토하였다.

Keywords

References

  1. Allersma, H. G. B., Hogervorst, J. R. and Pimoulle, M. (2001), Centrifuge modeling of suction pile installation using a percussion technique, Proc. of 11th International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, Stavanger, Norway, pp. 620-625.
  2. Bang, S., Preber, T., Cho, Y., Thomason, J., Karnoski, S. R. and Taylor, R. J. (2000), Suction piles for mooring of mobile offshore bases, Marine Structures, Vol. 13, No. 5. pp. 367-382.
  3. Caquot, A. and Kerisel, J. (1953), Sur le terme de surface dans le calcul des fondations en milieu pulverulent, Proc. Third International Conference on Soil Mechanics and Foundation Engineering, Zurich, Vol. 1, pp. 336-337.
  4. Cerato, A. B. and Lutenegger, A. J. (2007), Scale effects of shallow foundation bearing capacity on granular material, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 10, pp. 1192-1202. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1192)
  5. Houlsby, G. T. and Byrne, B. W. (2005), Design procedures for installation of suction caissons in sand, Proc. of the ICE, Geotechnical Engineering, Vol. 158, No. 3, pp. 135-144. https://doi.org/10.1680/geng.2005.158.3.135
  6. Houlsby, G. T., Ibsen, L. B. and Byrne, B. W. (2005), Suction caissons for wind turbines, Proc. International Symposium Frontiers in Offshore Geotechnics - ISFOG, Taylor and Francis, Perth, Australia, pp. 75-93.
  7. Oh, S. N. (1993), A study on estimation of shear strength parameters using cone index, Master's thesis, Seoul National University, pp. 32-47 (in Korean).
  8. Prandtl, L. (1921), Uber die eindringungsfestigkeit (harte) plastischer baustoffe und die festigkeit von schneiden, Zeitschrift fur angewandte Mathematik und Mechanik, Vol, 1, No. 1, pp. 15-20. https://doi.org/10.1002/zamm.19210010102
  9. Reissner, H. (1924), Zum erddruckproblem, Proceedings, First International Congress of Applied Mechanics, Delft, pp. 295-311.
  10. Senders, M. and Randolph, M. F. (2009), CPT-based method for the installation of suction caissons in sand, Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, Vol. 135, No. 1, pp. 14-25. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(14)
  11. Shiraishi, S. (1990), Variation in bearing capacity factors of dense sand assessed by loading tests, Soil and Foundation, Japanese Geotechnical Society, Vol. 30, No. 1, pp. 17-26.
  12. Tatsuoka, F., Goto, S., Tanska, T., Tani, K. and Kimura, Y. (1997), Particle size effects on bearing capacity of footing on granular material, International Symposium on Deformation and Progressive Failure in Geomechanics, Nagoya, Japan, pp. 133-138.
  13. Tran, M. N., Randolph, M. F. and Airey, D. W. (2007), Installation of suction caissons in sand with silt layers, Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, Vol. 133, No. 10, pp. 1183-1191. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1183)
  14. Tran, M. N. and Randolph, M. F. (2008), Variation of suction pressure during caisson installation, Geotechnique, Vol. 58, No. 1, pp. 1-11. https://doi.org/10.1680/geot.2008.58.1.1
  15. Vesic, A. S. (1973), Analysis of ultimate loads of shallow foundations, Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers, Vol. 99, No. SM1, pp. 45-73.

Cited by

  1. 실트질 모래지반에 설치된 해상풍력 석션버켓기초의 신뢰성 해석 vol.20, pp.12, 2019, https://doi.org/10.14481/jkges.2019.20.12.41
  2. 모형실험을 활용한 저수심 사질토 지반에서 원형강관 설치 석션압 평가 vol.22, pp.2, 2021, https://doi.org/10.5762/kais.2021.22.2.1