DOI QR코드

DOI QR Code

Synthesis of Fréchet-type Dendrimers with Tripodal Core via Staudinger/Aza-Wittig Reactions

Staudinger/Aza-Wittig 반응에 의한 삼발이 핵을 갖는 Fréchet-type 덴드리머의 합성

  • Received : 2014.01.11
  • Accepted : 2014.02.09
  • Published : 2014.05.25

Abstract

Efficient stitching methods for the synthesis of tripodal Fr$\acute{e}$chet-type dendrimers containing secondary amine as a connector were elaborated. The synthetic strategy involved Staudinger/aza-Wittig reactions (new click reaction) between tripodal tris(azides) and aldehyde-dendrons in toluene in the presence of triphenylphosphine and followed by the reduction of imine intermediates. The tripodal core (1,3,5-tris-(3-azido-propoxy)-benzene) was chosen to serve as the azide functionalities for dendrimer growth. 1,3,5-Tris-(3-azido-propoxy)-benzene was stitched with the aldehyde-functionalized Fr$\acute{e}$chet-type dendrons via Staudinger/aza-Wittig reactions leading to the formation of the corresponding Fr$\acute{e}$chet-type dendrimers in high yields.

덴드리머의 중심에 삼발이 핵을 갖는 덴드리머의 합성을 위한 효율적인 연결 방법이 개발되었다. 합성전략은 알데히드 덴드론과 아자이드기를 갖는 삼발이 핵 사이의 반응을 톨루엔 용매와 triphenylphosphine 존재하에서 진행하는 새로운 클릭화학(Staudinger/aza-Wittig 반응)을 이용하였다. 덴드리머의 삼발이 핵으로 작용할 수 있는 단위체인 1,3,5-tris-(3-azido-propoxy)-benzene을 합성하였고, 이 화합물의 아자이드기는 덴드리머의 형성에 이용되었다. 1,3,5-Tris-(3-azido-propoxy)-benzene을 이용하여 알데히드 덴드론과 Staudinger/aza-Wittig 반응을 통해 덴드리머를 합성하였으며, 모든 덴드리머는 높은 수득률로 얻어졌다.

Keywords

References

  1. A. C. Grimsdale and K. Mullen, Angew. Chem. Int. Ed., 44, 5592 (2005). https://doi.org/10.1002/anie.200500805
  2. D. A. Tomalia, Prog. Polym. Sci., 30, 294 (2005). https://doi.org/10.1016/j.progpolymsci.2005.01.007
  3. S. M. Grayson and J. M. J. Frechet, Chem. Rev., 101, 3919 (2001).
  4. G. R. Newkome, C. N. Moorefield, and F. Vogtle, Dendrimers and Dendrons: Concepts, Synthesis, Applications, Wiley-VCH, Weinheim, 2001.
  5. J. S. Choi, Y. H. Choi, and J. S. Park, Bull. Korean Chem. Soc., 25, 1025 (2004). https://doi.org/10.5012/bkcs.2004.25.7.1025
  6. T.-I. Kim, H.-S. Jang, D. K. Joo, J. S. Choi, and J.-S. Park, Bull. Korean Chem. Soc., 24, 123 (2003). https://doi.org/10.5012/bkcs.2003.24.1.123
  7. F. Palacios, C. Alonso, D. Aparicio, G. Rubiales, and J. M. de los Santos, Tetrahedron, 63, 523 (2007). https://doi.org/10.1016/j.tet.2006.09.048
  8. H. A. van Kalkeren, C. Grotenhuis, F. S. Haasjes, C. A. Hommersom, F. P. J. T. Rutjes, and F. L. van Delft, Eur. J. Org. Chem., 31, 7059 (2013).
  9. M. Menand, J.-M. Blais, and J. Xie, J. Org. Chem., 71, 3295 (2006). https://doi.org/10.1021/jo052489q
  10. J. Miyake and Y. Chujo, Macromolecules, 41, 9677 (2008). https://doi.org/10.1021/ma802100c
  11. S. Brase, C. Gil, K. Knepper, and V. Zimmermann, Angew. Chem. Int. Ed., 44, 5188 (2005). https://doi.org/10.1002/anie.200400657
  12. E. F. V. Scriven and K. Turnbull, Chem. Rev., 88, 351 (1988).
  13. J. W. Lee and B. K. Kim, Bull. Korean Chem. Soc., 26, 658 (2005). https://doi.org/10.5012/bkcs.2005.26.4.658
  14. J. W. Lee, B. K. Kim, and S. H. Jin, Bull. Korean Chem. Soc., 26, 833 (2005). https://doi.org/10.5012/bkcs.2005.26.5.833
  15. J. W. Lee, J. H. Kim, B. K. Kim, W. S. Shin, and S. H. Jin, Tetrahedron, 62, 894 (2006). https://doi.org/10.1016/j.tet.2005.10.039
  16. J. W. Lee, U. Y. Lee, S. C. Han, and J. H. Kim, Bull. Korean Chem. Soc., 30, 1001 (2009). https://doi.org/10.5012/bkcs.2009.30.5.1001
  17. S. C. Han, S. H. Jin, and J. W. Lee, Bull. Korean Chem. Soc., 32, 3624 (2011). https://doi.org/10.5012/bkcs.2011.32.10.3624
  18. S. C. Han, J. W. Lee, and S. H. Jin, Macromol. Res., 20, 1083 (2012). https://doi.org/10.1007/s13233-012-0149-4
  19. S. M. Grayson and J. M. J. Frechet, Chem. Rev., 101, 3919 (2001).
  20. T. Tozawa, Chem. Commun., 1904 (2004).
  21. L.-X. Liao, F. Stellacci, and D. V. McGrath, J. Am. Chem. Soc., 126, 2181 (2004). https://doi.org/10.1021/ja036418p
  22. M. Hara, S. Samori, X. Cai, S. Tojo, T. Arai, A. Momotake, J. Hayakawa, M. Uda, K. Kawai, M. Endo, M. Fujitsuka, and T. Majima, J. Am. Chem. Soc., 126, 14217 (2004). https://doi.org/10.1021/ja046650a
  23. E. Diez-Barra, R. Gonzalez, P. Sanchez-Verdu, and J. Tolosa, Tetrahedron, 60, 1563 (2004). https://doi.org/10.1016/j.tet.2003.12.003
  24. A. Momotake and T. Arai, Tetrahedron Lett., 45, 4131 (2004). https://doi.org/10.1016/j.tetlet.2004.03.152
  25. V. Balzani, P. Ceroni, C. Giansante, V. Vicinelli, F.-G. Klarner, C. Verhaelen, F. Vogtle, and U. Hahn, Angew. Chem. Int. Ed., 44, 4574 (2005). https://doi.org/10.1002/anie.200501025
  26. W.-S. Li, D.-L. Jiang, Y. Suna, and T. Aida, J. Am. Chem. Soc., 127, 7700 (2005). https://doi.org/10.1021/ja0513335
  27. C. S. Shanahan and D. V. McGrath, J. Org. Chem., 70, 1054 (2005). https://doi.org/10.1021/jo0483419
  28. J. W. Lee, B. K. Kim, and S. H. Jin, Bull. Korean Chem. Soc., 26, 715 (2005). https://doi.org/10.5012/bkcs.2005.26.5.715
  29. P. M. Fresneda and P. Molina, Synlett., 2004, 1 (2004).
  30. S. Eguchi, Arkivoc, 2005, 98 (2005).
  31. E. Bellur and P. Langer, Tetrahedron Lett., 47, 2151 (2006). https://doi.org/10.1016/j.tetlet.2006.01.121
  32. M. Menand, J.-C. Blais, J.-M. Valery, and J. Xie, J. Org. Chem., 71, 3295 (2006). https://doi.org/10.1021/jo052489q
  33. T. K.-K. Mong, A. Niu, H.-F. Chow, C. Wu, L. Li, and R. Chen, Chem. Eur. J., 7, 686 (2001). https://doi.org/10.1002/1521-3765(20010202)7:3<686::AID-CHEM686>3.0.CO;2-Z
  34. H. Sun and A. E. Kaifer, Org. Lett., 7, 3845 (2005). https://doi.org/10.1021/ol051245p
  35. C.-H. Wong, H.-F. Chow, S.-K. Hui, and K.-H. Sze, Org. Lett., 8, 1811 (2006). https://doi.org/10.1021/ol0603716