DOI QR코드

DOI QR Code

실크필름에 배양한 망막색소상피세포의 거동

Behavior of Retinal Pigment Epithelial Cells Cultured on Silk Films

  • 이소진 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 김혜윤 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 김슬지 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 양재원 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 이선의 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 박찬흠 (한림대학교 의과대학 춘천성심병원 이비인후과) ;
  • 주천기 (가톨릭 의과대학 안과학) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자나노공학과)
  • Lee, So Jin (Department of BIN Fusion Technology, Department of Polymer-Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University) ;
  • Kim, Hye Yun (Department of BIN Fusion Technology, Department of Polymer-Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University) ;
  • Kim, Seul Ji (Department of BIN Fusion Technology, Department of Polymer-Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University) ;
  • Yang, Jaewon (Department of BIN Fusion Technology, Department of Polymer-Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University) ;
  • Lee, Seon Ui (Department of BIN Fusion Technology, Department of Polymer-Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University) ;
  • Park, Chan Hum (Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University) ;
  • Joo, Choun-Ki (Department of Ophthalmology and Visual Science, The Catholic University of Korea, Seoul St. Mary's Hospital, College of Medicine) ;
  • Khang, Gilson (Department of BIN Fusion Technology, Department of Polymer-Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University)
  • 투고 : 2013.12.12
  • 심사 : 2014.01.29
  • 발행 : 2014.05.25

초록

망막색소상피(RPE)는 건강한 망막을 유지하는데 중요한 역할을 하고 RPE의 퇴화는 많은 망막질병을 유발한다. RPE 이식은 최근 망막 퇴화에 대한 가능성 있는 치료법으로 제시되고 있다. RPE 세포를 안전하게 이식하기 위해서는 지지체가 필요하므로 독특한 기계적 성질과 생체적합성을 갖는 실크를 사용하여 필름을 제조하였다. 실크필름의 FTIR, 접촉각 및 생분해성을 측정한 후, RPE 세포를 실크필름에 파종하여 그 영향을 확인하였다. MTT 분석, SEM, 면역형광염색, RT-PCR을 통해 세포의 부착, 생존도, 형태유지, 특이적 mRNA의 발현을 분석하였다. 본 연구에서는, 실크필름에 배양한 RPE 세포의 부착, 증식 및 표현형 유지가 뛰어남을 확인함으로써 실크필름의 망막 재생을 위한 조직 공학적 지지체로의 응용 가능성을 제시했다.

The retinal pigment epithelium (RPE) plays an important role in maintaining a healthy retina and the degeneration of RPE caused a number of retinal diseases. The transplantation of RPE has recently become a possible therapeutic modality for retinal degeneration. To transplant RPE cells securely, substrates are essential, and then as a substrate, we fabricated films using silk that has unique mechanical properties and biocompatibility. After the FTIR spectra, contact angle and biodegradation of silk films were confirmed, RPE cells were seeded and the influence of RPE cells on silk films was examined. We measured the cell adhesion, cell viability, morphology and specific mRNA expression by MTT assay, SEM, immunofluorescence and RT-PCR. In this study, we confirmed that attachment, proliferation and phenotype maintenance of RPE cells cultured on silk films were great, and thereby we were able to confirm the potential applications of silk films as tissue engineering carrier for regeneration of retina.

키워드

참고문헌

  1. M. Kokkinaki, N. Sahibzada, and N. Golestaneh, Stem Cells, 29, 825 (2011). https://doi.org/10.1002/stem.635
  2. J. T. Lu, C. J. Lee, S. F. Bent, H. A. Fishman, and E. E. Sabelman, Biomaterials, 28, 1486 (2007). https://doi.org/10.1016/j.biomaterials.2006.11.023
  3. A. M. Shadforth, K. A. George, A. S. Kwan, T. V. Chirila, and D. G. Harkin, Biomaterials, 33, 4110 (2012). https://doi.org/10.1016/j.biomaterials.2012.02.040
  4. O. Strauss, Physiol. Rev., 85, 845 (2005). https://doi.org/10.1152/physrev.00021.2004
  5. K. Kinnunen, G. Petrovski, M. C. Moe, A. Berta, and K. Kaarniranta, Acta Ophthalmol., 90, 299 (2012). https://doi.org/10.1111/j.1755-3768.2011.02179.x
  6. C. Ahlers, E. Gotzinger, M. Pircher, I. Golbaz, F. Prager, C. Schutze, B. Baumann, C. K. Hitzenberger, and U. Schmidt- Erfurth, Invest. Ophthalmol. Vis. Sci., 51, 2149 (2010). https://doi.org/10.1167/iovs.09-3817
  7. E. J. van Zeeburg, K. J. Maaijwee, T. O. Missotten, H. Heimann, and J. C. van Meurs, Am. J. Ophthalmol., 153, 120, e122 (2012).
  8. I. Barone, E. Novelli, I. Piano, C. Gargini, and E. Strettoi, PLoS One, 7, e50726 (2012). https://doi.org/10.1371/journal.pone.0050726
  9. V. Busskamp, J. Duebel, D. Balya, M. Fradot, T. J. Viney, S. Siegert, A. C. Groner, E. Cabuy, V. Forster, M. Seeliger, M. Biel, P. Humphries, M. Paques, S. Mohand-Said, D. Trono, K. Deisseroth, J. A. Sahel, S. Picaud, and B. Roska, Science, 329, 413 (2010). https://doi.org/10.1126/science.1190897
  10. S. R. Hynes and E. B. Lavik, Graefes Arch. Clin. Exp. Ophthalmol., 248, 763 (2010). https://doi.org/10.1007/s00417-009-1263-7
  11. C. J. Lee, J. A. Vroom, H. A. Fishman, and S. F. Bent, Biomaterials, 27, 1670 (2006). https://doi.org/10.1016/j.biomaterials.2005.09.008
  12. Y. Q. Zhang, Biotechnol. Adv., 20, 91 (2002). https://doi.org/10.1016/S0734-9750(02)00003-4
  13. B. B. Mandal and S. C. Kundu, Biomaterials, 30, 2956 (2009). https://doi.org/10.1016/j.biomaterials.2009.02.006
  14. B. K. Gu, M. S. Kim, S. J. Park, and C. H. Kim, Inter. J. Tissue Regen., 2, 83 (2011).
  15. S. Sahoo, S. L. Toh, and J. C. Goh, Biomaterials, 31, 2990 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.004
  16. A. Vasconcelos, G. Freddi, and A. Cavaco-Paulo, Biomacromolecules, 9, 1299 (2008). https://doi.org/10.1021/bm7012789
  17. H. Liu, X. Li, G. Zhou, H. Fan, and Y. Fan, Biomaterials, 32, 3784 (2011). https://doi.org/10.1016/j.biomaterials.2011.02.002
  18. L. J. Bray, K. A. George, S. L. Ainscough, D. W. Hutmacher, T. V. Chirila, and D. G. Harkin, Biomaterials, 32, 5086 (2011). https://doi.org/10.1016/j.biomaterials.2011.03.068
  19. L. Niu, R. Zou, Q. Liu, Q. Li, X. Chen, and Z. Chen, J. Nanomaterials, 2010, 1 (2010).
  20. Y. Wang, D. D. Rudym, A. Walsh, L. Abrahamsen, H. J. Kim, H. S. Kim, C. Kirker-Head, and D. L. Kaplan, Biomaterials, 29, 3415 (2008). https://doi.org/10.1016/j.biomaterials.2008.05.002
  21. Y. R. Woo and K. Na, Inter. J. Tissue Regen., 3, 63 (2012).
  22. L. P. Yan, J. M. Oliveira, A. L. Oliveira, S. G. Caridade, J. F. Mano, and R. L. Reis, Acta Biomater., 8, 289 (2012). https://doi.org/10.1016/j.actbio.2011.09.037
  23. D. N. Rockwood, R. C. Preda, T. Yucel, X. Wang, M. L. Lovett, and D. L. Kaplan, Nat. Protoc., 6, 1612 (2011). https://doi.org/10.1038/nprot.2011.379
  24. Y. Arima and H. Iwata, Biomaterials, 28, 3074 (2007). https://doi.org/10.1016/j.biomaterials.2007.03.013
  25. G. Thumann, A. Viethen, A. Gaebler, P. Walter, S. Kaempf, S. Johnen, and A. K. Salz, Biomaterials, 30, 287 (2009). https://doi.org/10.1016/j.biomaterials.2008.09.039
  26. R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, Biomaterials, 26, 3385 (2005). https://doi.org/10.1016/j.biomaterials.2004.09.020
  27. B. B. Mandal, A. S. Priya, and S. C. Kundu, Acta Biomater., 5, 3007 (2009). https://doi.org/10.1016/j.actbio.2009.03.026
  28. B. C. Dash, B. B. Mandal, and S. C. Kundu, J. Biotechnol., 144, 321 (2009). https://doi.org/10.1016/j.jbiotec.2009.09.019
  29. S. Mobini, B. Hoyer, M. Solati-Hashjin, A. Lode, N. Nosoudi, A. Samadikuchaksaraei, and M. Gelinsky, J. Biomed. Mater. Res. A, 101, 2392 (2013).
  30. H. J. Jin, J. Park, R. Valluzzi, P. Cebem, and D. L. Kaplan, Biomacromolecules, 5, 711 (2004). https://doi.org/10.1021/bm0343287
  31. D. E. Buchholz, S. T. Hikita, T. J. Rowland, A. M. Friedrich, C. R. Hinman, and L. V. Johnson, Stem cells, 27, 2427 (2009). https://doi.org/10.1002/stem.189