DOI QR코드

DOI QR Code

Effects of Wood Flour Size on the Physical Properties of Polypropylene/Wood Flour Composites

목분의 크기가 폴리프로필렌/목분 복합재료의 물성에 미치는 영향

  • Seo, Yong Won (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Dae Su (Department of Chemical Engineering, Chungbuk National University)
  • 서용원 (충북대학교 공과대학 화학공학과) ;
  • 김대수 (충북대학교 공과대학 화학공학과)
  • Received : 2013.11.06
  • Accepted : 2013.12.17
  • Published : 2014.05.25

Abstract

Polymer/wood flour composites are recently attracting a lot of interest because they are economic and ecofriendly. In this study, the effects of wood flour size on the thermal and mechanical properties of a polypropylene/wood flour composite were investigated. Mechanical properties of the composite samples prepared by melt-mixing and compression molding were tested by UTM and an izod impact tester, and thermal properties of them were measured by TGA, DMA, DSC and TMA. The best coupling agent was selected by testing three kinds of maleic anhydride modified polypropylene coupling agents, and under the same condition, the effects of wood flour size on the physical properties of the composite were investigated. According to the test results for four different wood flour sizes of 600, 250, 180 and $150{\mu}m$, flexural strength, flexural modulus, crystallinity and water-resistivity of the composite increased with decreasing wood flour size.

고분자/목분 복합재료는 경제적이고 친환경적이기 때문에 최근 많은 관심을 끌고 있다. 본 연구에서는 목분의 크기가 폴리프로필렌/목분 복합재료의 열적, 기계적 특성에 미치는 영향을 조사하였다. 용융혼합 및 압축성형에 의해 제조된 복합재료 샘플의 기계적 특성을 조사하기 위해 만능재료시험기와 아이조드 충격시험기를 사용하였고, 열적 특성을 조사하기 위해 TGA, DMA, DSC 및 TMA를 사용하였다. 말레산 무수물로 개질된 폴리프로필렌 커플링 제 3종을 테스트하여 최적의 커플링제를 선정하였으며 동일조건 하에서 목분의 크기가 복합재료의 물성에 미치는 영향을 살펴보았다. 600, 250, 180, $150{\mu}m$의 네 가지 목분 크기에 대해 실험한 결과 목분의 크기가 작을수록 복합재료의 굴곡강도, 굴곡탄성률, 결정화도 및 내수성이 증가하였다.

Keywords

References

  1. M. H. Schneider, Wood Fiber Sci., 26, 142 (1994).
  2. S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, Compos. Part A -Appl. Sci. Manuf., 35, 371 (2004). https://doi.org/10.1016/j.compositesa.2003.09.016
  3. A. K. Bledzki, S. Reihmane, and J. Gassan, Polym.-Plast. Technol. Eng., 37, 451 (1998). https://doi.org/10.1080/03602559808001373
  4. Y. Yu, Y. Yang, M. Murakami, M. Nomura, and H. Hamada, Adv. Compos. Mater., 22, 425 (2013). https://doi.org/10.1080/09243046.2013.843828
  5. S. M. Zabihzadeh, J. Thermoplast. Compos. Mater., 23, 817 (2010). https://doi.org/10.1177/0892705709353711
  6. S. K. Najafi, M. Tajvidi, and E. Hamidina, Holz. Roh. Werkst., 65, 377 (2007). https://doi.org/10.1007/s00107-007-0176-6
  7. S. H. Ahn and D. S. Kim, Polymer(Korea), 37, 204 (2013).
  8. B. D. Park and J. J. Balatinecz, J. Thermoplast. Compos. Mater., 9, 342 (1996). https://doi.org/10.1177/089270579600900404
  9. H. D. Rozman, C. Y. Lai, H. Ismail, and Z. Ishak, Polym. Int., 49, 1273 (2000). https://doi.org/10.1002/1097-0126(200011)49:11<1273::AID-PI469>3.0.CO;2-U
  10. K. Joseph, S. Thomas, and C. Pavithran, Polymer, 37, 5139 (1996). https://doi.org/10.1016/0032-3861(96)00144-9
  11. V. N. Hristov, R. Loch, and W. Grellmann, Polym. Test., 23, 581 (2004). https://doi.org/10.1016/j.polymertesting.2003.10.011
  12. Y. Wang, J. Cao, and L. Zhu, Wood Fiber Sci., 43, 262 (2011).
  13. J. George, M. S. Sreekala, and S. Thomas, Polym. Eng. Sci., 41, 1471 (2001). https://doi.org/10.1002/pen.10846
  14. B. S. Park and D. S. Kim, Polymer(Korea), 35, 124 (2011).
  15. J. Gassan, Compos. Part A -Appl. Sci. Manuf., 33, 369 (2002). https://doi.org/10.1016/S1359-835X(01)00116-6
  16. T. Ozdemir and F. Mengeloglu, Int. J. Mol. Sci., 9, 2559 (2008). https://doi.org/10.3390/ijms9122559
  17. F. P. La Mantia and M. Morreale, Polym. Eng. Sci., 46, 1131 (2006). https://doi.org/10.1002/pen.20561
  18. A. Espert, W. Camacho, and S. J. Karlson, J. Appl. Polym. Sci., 89, 2353 (2003). https://doi.org/10.1002/app.12091
  19. N. M. Stark and L. M. Matuana, J. Appl. Polym. Sci., 94, 2263 (2004). https://doi.org/10.1002/app.20996
  20. A. V. Maldhure, A. R. Chaudhari, and J. D. Ekhe, J. Therm. Anal. Calorim., 103, 625 (2011). https://doi.org/10.1007/s10973-010-1048-6
  21. M. M. Haque, M. E. Ali, M. Hasan, M. N. Islam, and H. Kim, Ind. Eng. Chem. Res., 51, 3958 (2012). https://doi.org/10.1021/ie200693v
  22. N. Touati, M. Kaci, S. Bruzaud, and Y. Grohens, Polym. Degrad. Stab., 96, 1064 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.03.015
  23. A. Nasir, T. Yasin, and A. Islam, J. Appl. Polym. Sci., 119, 3315 (2011). https://doi.org/10.1002/app.32918
  24. P. Reichert, J. Kressler, R. Thomann, R. Mllhaupt, and G. Stppelmann, Acta Polym. Sin., 49, 116 (1998). https://doi.org/10.1002/(SICI)1521-4044(199802)49:2/3<116::AID-APOL116>3.0.CO;2-T
  25. S. Zhang and A. R. Horrocks, Prog. Polym. Sci., 28, 1517 (2003). https://doi.org/10.1016/j.progpolymsci.2003.09.001
  26. S. Bourbigot, J. W. Gilman, and C. A. Wilkie, Polym. Degrad. Stab., 84, 483 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.01.006
  27. F. Gong, M. Feng, C. Zhao, S. Zhang, and M. Yang, Polym. Degrad. Stab., 84, 289 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.11.003
  28. H. Qin, Q. Su, S. Zhang, B. Zhao, and M. Yang, Polymer, 44, 7533 (2003). https://doi.org/10.1016/j.polymer.2003.09.014
  29. G. Marosi, A. Mrton, A. Szp, I. Csontos, S. Keszei, and E. Zimonyi, Polym. Degrad. Stab., 82, 379 (2003). https://doi.org/10.1016/S0141-3910(03)00223-4
  30. G. Beyer, Plastics, Additives and Compounding, 10, 22 (2002).
  31. W. Camacho and S. Karlsson, Polym. Degrad. Stab., 78, 385 (2002). https://doi.org/10.1016/S0141-3910(02)00192-1
  32. P. V. Joseph, K. Joseph, S. Thomas, C. K. S. Pillaic, V. S. Prasad, G. Groeninckx, and M. Sarkissova, Compos. Part A-Appl. Sci. Manuf., 34, 253 (2003). https://doi.org/10.1016/S1359-835X(02)00185-9

Cited by

  1. Physical properties of polypropylene composites with hydrophobized cellulose powder by soybean oil vol.133, pp.6, 2015, https://doi.org/10.1002/app.42929
  2. Recent development in thermoplastic/wood composites and nanocomposites: A review vol.33, pp.11, 2016, https://doi.org/10.1007/s11814-016-0183-6