DOI QR코드

DOI QR Code

Thickness Measurement of Ni Thin Film Using Dispersion Characteristics of a Surface Acoustic Wave

표면파의 분산 특성을 이용한 Ni 박막의 두께 측정

  • Received : 2014.03.31
  • Accepted : 2014.04.17
  • Published : 2014.04.30

Abstract

In this study, we suggest a method to measure the thickness of thin films nondestructively using the dispersion characteristics of a surface acoustic wave propagating along the thin film surface. To measure the thickness of thin films, we deposited thin films with different thicknesses on a Si (100) wafer substrate by controlling the deposit time using the E-beam evaporation method. The thickness of the thin films was measured using a scanning electron microscope. Subsequently, the surface wave velocity of the thin films with different thicknesses was measured using the V(z) curve method of scanning acoustic microscopy. The correlation between the measured thickness and surface acoustic wave velocity was verified. The wave velocity of the film decreased as the film thickness increased. Therefore, thin film thickness can be determined by measuring the dispersion characteristics of the surface acoustic wave velocity.

본 연구에서는 박막 표면을 따라 전파하는 표면파의 속도 분산성을 이용하여 박막의 두께를 비파괴적으로 측정할 수 있는 기법을 제안하였다. 표면파의 분산성을 이용하여 박막의 두께를 측정하기 위하여 전자빔증착법(E-beam evaporation)을 이용하여 Si(100) 웨이퍼 위에 니켈의 증착시간을 제어함으로서 두께가 다른 니켈 박막시험편을 제작하였다. 제작된 시험편의 실제 증착된 박막의 두께를 확인하기 위하여 SEM(scanning electron microscope)을 이용하여 박막의 단면사진을 촬영하여 두께를 확인하였다. 그 후에 두께가 다른 시험편에서의 표면파의 속도를 초음파현미경(scanning acoustic microscope)의 V(z) 곡선법을 이용하여 표면파의 속도를 측정하고 실제 측정된 두께와 표면파 속도와의 상관성을 확인하였다. 박막의 두께가 증가함에 따라 표면파의 속도는 감소하는 경향성을 나타내었다. 결론적으로 본 연구에서 제안한 표면파의 속도 분산성을 이용하여 나노 스케일 니켈 박막의 두께를 측정하는 기법이 가능성이 있음을 확인하였다.

Keywords

References

  1. H. S. Ju and B. R. Tittmann, "Recent advances in scanning acoustic microscopy for adhesion evaluation of thin films," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 6, pp. 534-549 (2009)
  2. C. S. Kim and I. K. Park "Review of micro/ nano nondestructive evaluation technique(I): surface and subsurface investigation," Journal of the Korean Society for Nondestructive Testing, Vol. 32, No. 2, pp. 198-209 (2012) https://doi.org/10.7779/JKSNT.2012.32.2.198
  3. C. S. Kim and I. K. Park "Review of micro/ nano nondestructive evaluation technique(II): measurement of acoustic properties," Journal of the Korean Society for Nondestructive Testing, Vol. 32, No. 4, pp. 418-439 (2012) https://doi.org/10.7779/JKSNT.2012.32.4.418
  4. V. Natarajan, "Micro and nano science and technology: naval perspective," Science Spectrum, Defence Research & Development Organization, pp. 237-244 (2009)
  5. A. Bonaccorsi and Grid Thoma, "Institutional complementarity and inventive performance in nano science and technology," Research Policy, Vol. 36, pp. 813-831 (2007) https://doi.org/10.1016/j.respol.2007.02.009
  6. J. J. Yun and W. J. Lee, "Determination of thin film thickness by EDS analysis and its modeling," Journal of The Korean Institute of Electrical land Electronic Material Engineers, Vol. 25, No. 8, pp 647-650 (2011) https://doi.org/10.4313/JKEM.2011.24.8.647
  7. R. D. Weglein, "A model for predicting acoustic materials signatures," Applied Physics Letter, Vol. 34, No, pp. 179-181 (1978)
  8. M. Duquennoy, M. Ourak, W. M. Xu, B Nongaillard and M. Ouaftouh, "Observation of V(z) curves with multiple echoes," NDT&E International, Vol. 28, No. 3, pp. 147-153 (1995) https://doi.org/10.1016/0963-8695(95)00006-J
  9. C. H. Lee, S. I. Kim and H. S. Shin, "A study on the characteristics of MgO thin film prepared by electron beam," Journal of the Korean Ceramic Society, Vol. 39, No. 12, pp. 1117-1176 (2002)
  10. K. Machida, H. Uchiike and H. Sasaki, "Surface analysis comparison of vacuum evaporation and thick-film printed MgO films in ac plasma displays," The Society for Information Display Symposium, 531 (1992)
  11. H. Uchiike and S. Harada, "Annealing process of evaporated MgO films in ac plasma display," The Society for Information Display Symposium, 444 (1991)