DOI QR코드

DOI QR Code

밴포드 법칙과 색차를 이용한 컬러 영상 접합 검출

Color Image Splicing Detection using Benford's Law and color Difference

  • 투고 : 2014.01.07
  • 심사 : 2014.04.23
  • 발행 : 2014.05.25

초록

본 논문에서는 밴포드 법칙과 컬러의 차이를 이용한 영상 접합 조작 검출 방법을 제안하고자 한다. 조작이 의심되는 영상에 대하여 먼저 컬러 변환을 시행한 후, 이산 웨이블릿 변환 및 이산 코사인 변환을 수행한다. 이상적인 밴포드 분포와 의심되는 영상에 대한 밴포드 분포의 차이를 특징으로 추출한다. 아울러 컬러 성분에 대한 밴포드 분포의 차이를 특징으로 사용한다. 본 논문의 방법은 13개의 특징만으로 우수한 접합 영상 검출 성능을 보인다. 추출된 특징 벡터를 SVM(support vector machine) 분류기를 이용하여 학습한 후 영상의 접합 여부를 판별한다. 본 논문의 방법은 기존의 방법보다 적은 수의 특징으로 높은 영상 접합 조작 결과를 보임을 확인하였다.

This paper presents a spliced color image detection method using Benford' Law and color difference. For a suspicious image, after color conversion, the discrete wavelet transform and the discrete cosine transform are performed. We extract the difference between the ideal Benford distribution and the empirical Benford distribution of the suspicious image as features. The difference between Benford distributions for each color component were also used as features. Our method shows superior splicing detection performance using only 13 features. After training the extracted feature vector using SVM classifier, we determine whether the presence of the image splicing forgery. Experimental results show that the proposed method outperforms the existing methods with smaller number of features in terms of splicing detection accuracy.

키워드

참고문헌

  1. H. Farid, "A picture tells a thousand lies", New Scientist, vol. 2411, pp. 38-41, 2003.
  2. T. T. Ng, S. F. Chang, and Q. Sun, "Blind detection of photomontage using higher order statistics", Proceedings of IEEE International Symposium o1n Circuits and Systems, vol. 5, pp. 688-691, 2004.
  3. W. Chen, Y. Q. Shi, and W. Su, "Image splicing detection using 2-D phase congruency and statistical moments of characteristic function," Proceedings of SPIE Electronic Imaging: Security, Steganography, and Watermarking of Multimedia Contents, vol. 6505, pp. 6505R.1-6505R.8, 2007.
  4. M. K. Johnson, and H. Farid, "Exposing digital forgeries in complex lighting environments," IEEE Trans. Inform. Forensics Security, vol. 3, no. 2, pp. 450-461, 2007.
  5. Y. F. Hsu, and S. F. Chang, "Detecting image splicing using geometry invariants and camera characteristics consistency", Proceedings of IEEE International Conference on Multimedia and Expo, pp. 549-552, 2006.
  6. X. Zhao, J. Li, S. Li, and S. Wang, "Detecting digital image splicing in chroma spaces," Lecture Note on Computer Science, vol. 6526, pp. 12-22, 2011.
  7. W. Wang, J. Dong, and T. N. Tan, "Effective image splicing detection based on image chroma," Proceedings of International Conference on Image Processing, pp. 1257-1260, 2009.
  8. S. Tong, Z. Zhang, Y. Xie, and X. Wu, "Image splicing detection based on statistical properties of Benford model," Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering. pp. 792-795, 2013.
  9. B. Mahdian, and S. Saic, "A bibliography on blind methods for identifying image forgery," Signal Processing: Image Communication, vol. 25, no. 6, pp. 389-399, 2010 https://doi.org/10.1016/j.image.2010.05.003
  10. H. Farid, "A survey of image forgery detection," IEEE Signal Processing Magazine, vol. 26, no. 2, pp. 16-25,2009. https://doi.org/10.1109/MSP.2008.931079
  11. G. Qadir, Z. Xi, and A. T. Ho. "Estimating JPEG2000 compression for image forensics using Benford's Law," Proceedings of SPIE, vol. 7723, pp. 77230J-1, 2010.
  12. D. Fu, Q. Y. Shi, and S. Wei, "A generalized Benford's law for JPEG coefficients and its applications in image forensics," Proceedings of SPIE, vol. 6505, p. 65051L, 2007.
  13. S. Newcomb, "Note on the frequency of use of the different digits in natural numbers", American Journal of Mathematics, vol. 4, no. 1/4, pp. 39-40, 1881. https://doi.org/10.2307/2369148
  14. F. Benford, "The law of anomalous numbers," Proc. of the American Philosophical Society, vol. 78, pp. 551-572, 1938.
  15. J M. Jolion, "Images and benford's law" Journal of Mathematical Imaging and Vision, vol. 14, no. 1, pp. 73-81, 2001. https://doi.org/10.1023/A:1008363415314
  16. F. Perez-Gonzalez, G. L. Heileman, and C. T. Abdallah, "Benford's law in image processing," Proceedings IEEE International Conference on Image Processing, vol. 1, pp. 405-408, 2007.
  17. E. D. Acebo, and M. Sbert, "Benford's law for natural and synthetic images," Proceedings of First Workshop on Computational Aesthetics in Graphics, Visualization and Imaging, pp. 169-176, 2005.
  18. J. R. Hernandez, M. Amado, and F. Perez-Gonzalez, "DCT domain watermarking techniques for still images: Detector performance analysis and a new structure," IEEE Trans. on Image Processing, vol. 9, no. 1, pp. 55-68, 2000. https://doi.org/10.1109/83.817598
  19. T. T. Ng, and S. F. Chang, "A data set of authentic and spliced image blocks," ADVENT Technical Report #203-2004-3, Columbia University, June 8th 2004.
  20. Hall, Mark, et al. "The WEKA data mining software: an update." ACM SIGKDD Explorations Newsletter 11.1, pp.10-18, 2009. https://doi.org/10.1145/1656274.1656278