DOI QR코드

DOI QR Code

The Nonlinear Equalizer for Super-RENS Read-out Signals using an Asymmetric Waveform Model

비대칭 신호 모델을 이용한 super-RENS 신호에서의 비선형 등화기

  • Moon, Woosik (Soongsil University, School of Electronic Engineering) ;
  • Park, Sehwang (Soongsil University, School of Electronic Engineering) ;
  • Lee, Jieun (Soongsil University, School of Electronic Engineering) ;
  • Im, Sungbin (Soongsil University, School of Electronic Engineering)
  • 문우식 (숭실대학교 정보통신전자공학부) ;
  • 박세황 (숭실대학교 정보통신전자공학부) ;
  • 이지은 (숭실대학교 정보통신전자공학부) ;
  • 임성빈 (숭실대학교 정보통신전자공학부)
  • Received : 2014.03.25
  • Accepted : 2014.04.30
  • Published : 2014.05.25

Abstract

Super-resolution near-field structure (super-RENS) read-out samples are affected by a nonlinear and noncausal channel, which results in inter-symbol interference (ISI). In this study, we investigate asymmetry or domain bloom in super-RENS in terms of equalization. Domain bloom is caused by writing process in optical recording. We assume in this work that the asymmetry symbol conversion scheme is to generate asymmetric symbols, and then a linear finite impulse response filter can model the read-out channel. For equalizing this overall nonlinear channel, the read-out signals are deconvolved with the finite impulse response filter and its output is decided based on the decision rule table that is developed from the asymmetry symbol conversion scheme. The proposed equalizer is investigated with the simulations and the real super-RENS samples in terms of raw bit error rate.

Super-RENS(super-resolution near-field structure) read-out 신호는 비선형 채널을 겪으면서 ISI(inter-symbol interference)의 영향으로 신호가 변형된다. 본 논문에서는 등화기의 측면에서 super-RENS 신호에 나타나는 비대칭성과 domain bloom 특성에 대해 살펴본다. Domain bloom은 광 레코드의 기록 과정에서 발생한다. 본 연구에서는 비대칭 심벌 변환 방식을 이용하여 비대칭 심벌들을 생성하며, 비선형 심벌과 선형 FIR(finite impulse response) 필터로 read-out 채널을 모델링한다. 이러한 비선형 채널의 등화는 채널의 선형 FIR 필터의 역필터를 찾은 다음 역필터로 등화된 신호를 심볼 변환 방식으로부터 전개된 결정 방식 테이블에 기초하여 판별하는 과정으로 진행된다. 제안하는 등화기를 raw BER(bit error ratio)의 관점에서 모의실험과 실제 super-RENS read-out 신호를 이용하여 분석하였다.

Keywords

References

  1. L. Huang, G. Mathew, and T. Chong, "Channel Modeling and Target Design for Two-Dimensional Optical Storage Systems," IEEE Trans. Magn., vol. 41, no. 8, pp. 2414-2424, Aug. 2005. https://doi.org/10.1109/TMAG.2005.852212
  2. N. Takamori, M. Yamamoto, G. Mori, H. Tajima, K. Kojima, and A. Takahashi, "Energy Gap induced Super-Resolution (EG-SR) ROM Disc with High Readout Stability," ISOM/ODS'05 Tech. Dig., ThC1., 2005.
  3. M. Kagawa, J. Nakano, T. Abiko, and S. Igarashi, "A Study of Asymmetry Compensation for Partial-Response Maximum-Likelihood Detection in Optical Recording Media," Jpn. J. Appl. Phys., vol. 37, pp. 2214-2216, Apr. 1998. https://doi.org/10.1143/JJAP.37.2214
  4. J. Tominaga, T. Nakano, and N. Atoda, "An approach for recording and readout beyond the diffraction limit with an Sb thin film," Appl. Phys. Lett., vol. 73, no. 15, pp. 2078-2080, Oct. 1998. https://doi.org/10.1063/1.122383
  5. T, Nakano, A. Sato, H. Fuji, J. Tominaga, and N. Atoda, "Transmitted signal detection of optical disks with a superresolution near-field structure," Appl. Phys. Lett., vol. 75, no. 2, pp. 151-153, May. 1999. https://doi.org/10.1063/1.124302
  6. J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, "Ferroelectric catastrophe: Beyond nanometre-scale optical resolution," Nanotechnology, vol. 15, no. 5, pp. 411-415, May 2004. https://doi.org/10.1088/0957-4484/15/5/001
  7. J. Kim, I. Hwang, H. Kim, I. Park, and J. Tominaga, "Signal Characteristics of Super-Resolution Near-Field Structure Disks with 100 GB Capacity," Jpn. J. Appl. Phys., vol. 44, pp. 3609-3611, May. 2005. https://doi.org/10.1143/JJAP.44.3609
  8. W. Moon, S. Park, and S. Im, "Application of the CS-based Sparse Volterra Filter to the Super-RENS Disc Channel Modeling," Journal of the Institute of Electronics and Information Engineers, vol. 49, no. 5, pp. 354-360, May 2012.
  9. M. Seo, S. Im, and J. Lee, "Nonlinear Equalization for Super-Resolution Near-Field Structure Discs," Jpn. J. Appl. Phys., vol. 47, pp. 6045-6047, Jul. 2008. https://doi.org/10.1143/JJAP.47.6045
  10. T. Maeda, H. Minemura, and T. Shimano, "Nonlinear Components in Optical Disk Signals: Analysis and Compensation," IEEE Trans. Magn., vol. 41, no. 2, pp. 992-996, Feb. 2005. https://doi.org/10.1109/TMAG.2004.842064
  11. M. Seo, S. Jeon, and S. Im, "Nonlinear Modeling of Super-RENS Disc Systems Using a SCPWL Model," Journal of the Institute of Electronics and Information Engineers, vol. 47, no. 12, pp. 1005-1011, Dec. 2010.
  12. M. Seo, S. Jeon, and S. Im, "Nonlinear Equalization for Super-Resolution Near-Field Structure Discs Using a Simplicial Canonical Piecewise-Linear Model," Jpn. J. Appl. Phys., vol. 50, no. 9, pp. 09MB04, Sep. 2011. https://doi.org/10.7567/JJAP.50.09MB04
  13. H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, "Modeling and Compensation of Asymmetry in Optical Recording," IEEE Trans. Comm., vol. 50, pp. 2052-2063, Dec. 2002. https://doi.org/10.1109/TCOMM.2002.806507
  14. S. Im, S. Park and W. Moon, "Domain Bloom in Super-Resolution Near-Field Structure Read-Out Signals," Jpn. J. Appl. Phys., vol. 52, no. 9, pp. 09LE01, Sep. 2013. https://doi.org/10.7567/JJAP.52.09LE01
  15. S. Haykin, Adaptive Filter Theory, 4th ed., Prentice Hall, pp. 436-463, 2002.
  16. M. Kim, K. Ok, and J. Lee, "Performance Comparison of Detection Methods in Magneto-optical Disc System with (1, 7) RLL Code," Proc. IEEE GOLBECOM'95, pp. 1389-1393, 1995.
  17. R. Lynch, Jr., "Channels and Codes for Magnetooptical Recording," IEEE J. Sel. Areas Commun., vol. 10, no. 1, pp. 57-72, Jan. 1992. https://doi.org/10.1109/49.124469
  18. B. Hyot, F. Laulagnet, O. Lemonnier, and A. Fargeix, "Super-Resolution ROM Disc with a Semi-Conductive InSb Active Layer," ISOM'07 Tech. Dig., Mo-B-04, 2007.
  19. M. H. Hayes, Statistical Digital Signal Processing and Modeling, 1st ed., Willey, pp. 335-353, 1996.
  20. M. Schetzen, "Nonlinear system modeling based on the Wiener theory," Proc. IEEE, vol. 69, no. 12, pp. 1557-1573, Dec. 1981. https://doi.org/10.1109/PROC.1981.12201