DOI QR코드

DOI QR Code

Comparison of Growth Characteristics, Antioxidant Activity and Total Phenolic Contents of Amaranthus Species according to the Different Cultivation Regions and Varieties in South Korea

안데스 작물 '아마란스'의 재배지역과 품종에 따른 생육특성, 항산화활성 및 총페놀함량 변화

  • 홍수영 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 조광수 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 진용익 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 윤영호 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 김수정 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 남정환 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 정진철 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 권오근 (농촌진흥청 국립원예특작과학원) ;
  • 손황배 (농촌진흥청 국립식량과학원 고령지농업연구센터)
  • Received : 2013.03.15
  • Accepted : 2014.01.24
  • Published : 2014.03.30

Abstract

Yield, growth characteristics, free radical-scavenging capacities, total phenolic contents and free amino acids contents were determined in Amaranthus species grown in Korea. And this study was aimed to investigate the functional properties of Amaranthus in two regions(Gangneung and Daegwallyeong). Yield ranged from 125 to 465 kg $10a^{-1}$ and RRC 1027 was the highest yield. Amaranthus seed size was very small, average seed weight(1,000 seeds) varied 0.42~0.82 g, especially Kerala Red was the most light weight. In DPPH (1,1-diphenyl-2-picryl hydrazyl) radical scavenging activity, there is no significantly different between growing regions but colored Kerala Red was the highest among varieties. The total amount of phenolic compounds varied from 994 to 1,732 mg/kg. Among amino acids of seeds, the contents were in order of glutamic acid(30.5 mg $100g^{-1}$) > aspartic acid (26.1 mg $100g^{-1}$) > arginine(24.3 mg $100g^{-1}$). The present study shows that South Korea is suitable for the cultivation of Amaranthus. Common grains lack glutamic acid, aspartic acid and arginine we need for optimal health, but Amaranthus contains these amino acids. Amaranthus is great potential to develop new crop. But for measurement of antioxidant activity, in addition to DPPH method we are looking the other way.

본 연구는 강릉, 대관령에서 재배된 아마란스 품종별로 수량, 생육특성, 항산화활성, 총페놀함량 그리고 유리아미노산의 차이를 조사하고 국내 적응이 가능한지 살펴보고자 실시하였다. 수량은 125~465 kg $10a^{-1}$의 범위였으며 RRC 1027 품종이 가장 많았다. 천립중은 0.42~0.82 g으로 아주 작았고 특히 Kerala Red 품종이 가장 가벼웠다. DPPH를 이용한 항산화 활성 분석에서 지역별로는 강릉과 대관령 사이의 유의차는 없었으나 품종별로는 유색품종인 Kerala Red가 가장 높았다. 총 폴리페놀 함량을 분석한 결과 $994{\sim}1,732mg\;kg^{-1}$의 범위를 보였다. 종실의 유리아미노산 함량분석 결과 glutamic acid 30.5 mg $100g^{-1}$, aspartic acid 26.1 mg $100^{-1}$, arginine 24.3 mg $100g^{-1}$ 순이었다. 이러한 결과를 종합해 볼 때 국내에서 아마란스 재배는 수량 등에 서도 안정적이었고 glutamic acid, aspartic acid, arginine 등 곡물에 부족할 수 있는 유리아미노산을 포함하고 있어 새로운 작물로 개발 가능성이 높을 것으로 기대된다. 그러나 항산화활성능을 측정하기 위하여 DPPH 방법 이외에 다른 방법을 모색할 필요가 있을 것으로 생각된다.

Keywords

References

  1. Amin, I., Y. Norazaidah, and K. I. Emmy Hainida. 2006. Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food Chemistry 94:47-52. https://doi.org/10.1016/j.foodchem.2004.10.048
  2. Asao, M., and K. Watanabe. 2010. Functional and bioactive properties of quinoa and amaranth. Food Sci Technol Res 16:163-168. https://doi.org/10.3136/fstr.16.163
  3. Barba de la Rosa, A. P., I. S. Fomsgaard, B. Laursen, A. G. Mortensen, L. Olvera-Martinez, C. Silva-Sanches, A. Mendoza-Herrera, J. Gonzalez-Castaneda, and A. De Leon-Rodriguez. 2009. Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production:Phenolic acids and flavonoids with potential impact on its nutraceutical quality. J of Cereal Science 49: 117-121. https://doi.org/10.1016/j.jcs.2008.07.012
  4. Cho, H. Y., D. M. Son, J. M. Kim, B. S. Seo, S. Y. Yang, B. W. Kim, and B. G. Heo. 2008. Effects of LEDs on the germination, growth and physiological activities of amaranth sprouts. Kor J Hort Sci Technol 26:106-112.
  5. Choi, C. R., J. J. Chio, S. R. Kim, J. H. Lee, and M. S. Shin. 2000. Comparisons of characteristics of amaranth starches isolated from five cultivars grown in Korea. Korean J Food Sci Technol 32:252-257.
  6. Delgado, E., K. Moller, and E. Pawelzik. 1999. Influence of nitrogen fertilization on protein quality of rye and oat grains. Agribiol Res 52:337-345.
  7. Gins, M. S., M. P. Kolesnikov, P. F. Kononkov, and V. K. Gins. 2010. Characteristics of the accumulation of phenolic compounds in amaranth leaves under the effect of growth stimulators. Russian Agricultural Sciences 36:349-352. https://doi.org/10.3103/S1068367410050095
  8. Gorinstein, S., E. Pawelzik, E. Delgado-Licon, R. Haruenkit, M. Weisz, and S. Trakhtenberg. 2002. Characterisation of pseudocereal and cereal proteins by protein and amino acid analyses. J Sci Food Agric 82:886-891. https://doi.org/10.1002/jsfa.1120
  9. He, H. P., Y. Cai, M. Sun, and H. Corke. 2002. Extraction and purification of squalene from amaranthus grain. J Agric Food Chem 50:368-372. https://doi.org/10.1021/jf010918p
  10. Jeong, J. A., S. H. Kwon, and C. H. Lee. 2007. Screening for antioxidative activities of extracts from aeral and underground parts of some edible and medicinal ferns. Korea J. Plant Res. 20(2):185-192.
  11. Jin, Y. I., S. Y. Hong, S. J. Kim, H. C. Ok, Y. J. Lee, J. H. Nam, Y. H. Yoon, J. C. Jeong, and S. A. Lee. 2010. Comparison of antioxidant activity and amino acid components of mungbean cultivars grown in highland area in Korea. Korean J Environ Agric 29:381-387. https://doi.org/10.5338/KJEA.2010.29.4.381
  12. Karaseva, A. N., V. V. Karlin, V. F. Mironov, and A. I. Konovalov. 2001. Phenolic compounds of Amaranthus cruentus. Chemistry of Natural Compounds 37:88. https://doi.org/10.1023/A:1017623131266
  13. Kim, S. R. 2003. Application of pseducereal Amaranth and its valuable components for development of new food products. Ministry for Food, Agriculture, Forestry and Fisheries.
  14. Ku, K. M., S. K. Kim, and Y. H. Kang. 2009. Antioxidant activity and functional components of corn silk(Zea mays L.). Korea J. Plant Res. 22(4):323-329.
  15. Lee, J. H., H. I. Moon, J. I. Lee, C. W. Kang, and S. T. Lee. 1996. Isolation and identification of squalene and antineoplastic activity of its residue extract in amaranth. Korean J Crop Sci 41:450-455.
  16. Lee, J. H., S. R. Kim, J. Y. Song, and M. S. Shin. 1999. Comparison on physicochemical properties of amaranth starch with other waxy cereal starches. Korean J Food Sci Technol 31:612-618.
  17. National Research Council. 1984. Amaranth: Modern prospects for an ancient crop. National Academy Press, Washington D.C.
  18. Pasko, P., H. Barton, P. Zagrodzki, S. Gorinstein, M. Fołta, and Z. Zachwieja. 2009. Antocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry 115:994-998. https://doi.org/10.1016/j.foodchem.2009.01.037
  19. Pisarikova, B. K. and I. Herzig. 2005. Amino acid contents and biological value of protein in various amaranth species. Czech J Anim Sci 50:169-174.
  20. Repo-Carrasco-Valencia, R., J. K. Hellstrom, J. Pihlava, and P. H. Mattila. 2010. Flavonoids and other phenolic compounds in andean indigenous grains: Quinoa (Chenopodium quinoa), kaniwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry 120: 128-133. https://doi.org/10.1016/j.foodchem.2009.09.087
  21. Thanapornpoonpong, S. N., W. Somsak, E. Pawelzik, and S. Vearasilp. 2007. Yield of amaranth (Amaranthus spp.) grown in an irrigated area of Northern Tiailand. http://www.tropentag.de/2007/abstracts.
  22. Woo, K. S., J. S. Lee, J. R. Kang, J. Y. Ko, S. B. Song, B. G. Oh, M. C. Seo, K. Y. Kwak, and M. H. Nam. 2011. Effects of cultivated area on antioxidant compounds and antioxidant activities of Sorghum (Sorghum bicolor L. Moench). J Korean Soc Food Sci Nur 40:1512-1517. https://doi.org/10.3746/jkfn.2011.40.11.1512

Cited by

  1. Optimization of Extraction Conditions of Polyphenolic Compounds from Amaranth Leaf using Statistically-based Optimization vol.54, pp.3, 2016, https://doi.org/10.9713/kcer.2016.54.3.315
  2. Comparison of Nutritional Compositions between Amaranth Baby-Leaves Cultivated in Korea vol.45, pp.7, 2016, https://doi.org/10.3746/jkfn.2016.45.7.980
  3. 아마란스 씨앗 추출물의 항염 및 Tyrosinase 억제 효과 vol.30, pp.2, 2014, https://doi.org/10.7732/kjpr.2017.30.2.144
  4. 아마란스의 생육기간에 따른 건물생산성 및 종실 수량 vol.31, pp.1, 2018, https://doi.org/10.7732/kjpr.2018.31.1.024
  5. Effect of amaranth seed extracts on glycemic control in HepG2 cells vol.54, pp.6, 2014, https://doi.org/10.4163/jnh.2021.54.6.603