DOI QR코드

DOI QR Code

Applications of Field-Effect Transistor (FET)-Type Biosensors

  • Park, Jeho (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Nguyen, Hoang Hiep (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Woubit, Abdela (Department of Pathobiology, College of Veterinary Medicine Nursing & Allied Health (CVMNAH), Tuskegee University) ;
  • Kim, Moonil (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2014.03.17
  • Accepted : 2014.03.24
  • Published : 2014.03.30

Abstract

A field-effect transistor (FET) is one of the most commonly used semiconductor devices. Recently, increasing interest has been given to FET-based biosensors owing totheir outstanding benefits, which are likely to include a greater signal-to-noise ratio (SNR), fast measurement capabilities, and compact or portable instrumentation. Thus far, a number of FET-based biosensors have been developed to study biomolecular interactions, which are the key drivers of biological responses in in vitro or in vivo systems. In this review, the detection principles and characteristics of FET devices are described. In addition, biological applications of FET-type biosensors and the Debye length limitation are discussed.

Keywords

References

  1. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. Lieber, Proc. Natl. Acad. Sci. USA 101, 14017 (2004). https://doi.org/10.1073/pnas.0406159101
  2. D. Kim, Y. Jeong, H. Park, J. Shin, P. Choi, J. Lee, and G. Lim, Biosens. Bioelectron. 20, 69 (2004). https://doi.org/10.1016/j.bios.2004.01.025
  3. E. Stern, J. Klemic, D. Routenberg, P. Wyrembak, D. Turner-Evans, A. Hamilton, D. LaVan, T. Fahmy, and M. Reed, Nature 445, 519 (2007). https://doi.org/10.1038/nature05498
  4. E. Stern, E. Steenblock, M. Reed, and T. Fahmy, Nano Lett. 8, 3310 (2008). https://doi.org/10.1021/nl801693k
  5. S. D. Caras, D. Petelenz, and J. Janata, Anal. Chem. 57, 1920 (1985). https://doi.org/10.1021/ac00286a028
  6. L. C. Clark Jr. and C. Lyons, Ann. N. Y. Acad. Sci. 102, 29 (1962).
  7. S. Park, T. Taton, and C. Mirkin, Science 295, 1503 (2002).
  8. Y. Fan, X. Chen, A. D. Trigg, C. Tung, J. Kong, and Z. Gao, J. Am. Chem. Soc. 129, 5437 (2007). https://doi.org/10.1021/ja067477g
  9. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Guntherodt, C. Gerber, and J. K. Gimzewski, Science 288, 316 (2000). https://doi.org/10.1126/science.288.5464.316
  10. D. Yao, F. Yu, J. Kim, J. Scholz, P. Nielsen, E. Sinner, and W. Knoll, Nucleic Acids Res. 32, e177 (2004). https://doi.org/10.1093/nar/gnh175
  11. P. Bergveld, IEEE Trans. Biomed. Eng. 70 (1970).
  12. J. Janata and S. D. Moss, Biomed. Eng. 6, 241 (1976).
  13. S. Caras and J. Janata, Anal. Chem. 52, 1935 (1980). https://doi.org/10.1021/ac50062a035
  14. M. Marrakchi, S. Dzyadevych, O. Biloivan, C. Martelet, P. Temple, and N. Jaffrezic-Renault, Materials Science & Engineering C 26, 369 (2006). https://doi.org/10.1016/j.msec.2005.10.052
  15. P. Sarkar, Microchem. J. 64, 283 (2000). https://doi.org/10.1016/S0026-265X(00)00005-9
  16. S. Setford, S. White, and J. Bolbot, Biosens. Bioelectron. 17, 79 (2002). https://doi.org/10.1016/S0956-5663(01)00264-0
  17. A. Sedra and K. Smith, Oxford University Press USA (2004).
  18. B. Streetman, Prentice Hall (1995).
  19. G. Zheng, F. Patolsky, Y. Cui, W. Wang, and C. Lieber, Nat. Biotechnol. 23, 1294 (2005). https://doi.org/10.1038/nbt1138
  20. Y. Cui, Q. Wei, H. Park, and C. Lieber, Science 293, 1289 (2001). https://doi.org/10.1126/science.1062711
  21. S. H. Han, S. K. Kim, K.Park, S. Y. Yi, H. Park, H. Lyu, M. Kim, and B. H. Chung, Anal. Chim. Acta 665, 79 (2010). https://doi.org/10.1016/j.aca.2010.03.006
  22. E. Souteyrand, J. Cloarec, J. Martin, C. Wilson, I. Lawrence, S. Mikkelsen, and M. Lawrence, J. Phys. Chem. B 101, 2980 (1997). https://doi.org/10.1021/jp963056h
  23. D. Kim, Y. Jeong, H. Park, J. Shin, P. Choi, J. Lee, and G. Lim, Biosens. Bioelectron. 20, 69 (2004). https://doi.org/10.1016/j.bios.2004.01.025
  24. M. Schöning and A. Poghossian, The Analyst 127, 1137 (2002). https://doi.org/10.1039/b204444g
  25. H. Park, S. Kim, K. Park, H. Lyu, C. Lee, S. Chung, W. Yun, M. Kim, and B. Chung, FEBS Lett. 583, 157 (2009). https://doi.org/10.1016/j.febslet.2008.11.039
  26. M. Fehr, D. Ehrhardt, S.Lalonde, and W. Frommer, Curr. Opin. Plant Biol. 7, 345 (2004). https://doi.org/10.1016/j.pbi.2004.03.015
  27. H. Park, S. K. Kim, K. Park, S. Y. Yi, J. W. Chung, B. H. Chung, and M. Kim, Sensor Lett. 8, 233 (2010). https://doi.org/10.1166/sl.2010.1248
  28. V. Volotovsky and N. Kim, Biosens. Bioelectron. 13, 1029 (1998). https://doi.org/10.1016/S0956-5663(98)00004-9
  29. A. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, and I. Willner, Sens. Actuators B 70, 222 (2000). https://doi.org/10.1016/S0925-4005(00)00573-6
  30. M. Zayats, A. Kharitonov, E. Katz, A. F. Buckmann, and I. Willner, Biosens. Bioelectron. 15, 671 (2000). https://doi.org/10.1016/S0956-5663(00)00120-2
  31. K. Park, S. Choi, M. Lee, B. Sohn, and S. Choi, Sens. Actuators B 83, 90 (2002). https://doi.org/10.1016/S0925-4005(01)01049-8
  32. E. Stern, R. Wagner, F. Sigworth, R. Breaker, T. Fahmy, and M. Reed, Nano Lett. 7, 3405 (2007). https://doi.org/10.1021/nl071792z
  33. D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, Sensors 8, 1400 (2008). https://doi.org/10.3390/s8031400
  34. N. Elfstrom, R. Juhasz, I. Sychugov, T. Engfeldt, A. Karlstrom, and J. Linnros, Nano Lett. 7, 2608 (2007). https://doi.org/10.1021/nl0709017
  35. R. Schoch, J. Han, and P. Renaud, Rev. Mod. Phys. 80, 839 (2008). https://doi.org/10.1103/RevModPhys.80.839

Cited by

  1. Strategies in Protein Immobilization on a Gold Surface vol.24, pp.1, 2015, https://doi.org/10.5757/ASCT.2015.24.1.1
  2. Metal oxide semiconductor field-effect transistor (MOSFET)-based direct monitoring of p53 in spiked serum vol.37, 2016, https://doi.org/10.1016/j.jiec.2016.03.015
  3. Detection of urea using urease and paramagnetic Fe3O4 particles incorporated into polyelectrolyte microcapsules vol.51, pp.2, 2016, https://doi.org/10.1016/j.procbio.2015.11.028
  4. Enzyme immobilization on metal oxide semiconductors exploiting amine functionalized layer vol.7, pp.32, 2017, https://doi.org/10.1039/C7RA01615H
  5. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules vol.3, pp.25, 2015, https://doi.org/10.1039/C5TC00755K