DOI QR코드

DOI QR Code

Ag의 두께에 따른 V2O5/Ag/ITO 구조의 다층 박막의 광학적, 전기적 특성

The Effect of Ag thickness on Optical and Electrical Properties of V2O5/Ag/ITO Multilayer

  • 고영희 (전남대학교 응용화학공학부) ;
  • 박광훈 (전남대학교 응용화학공학부) ;
  • 고항주 (한국광기술원 광바이오연구센터) ;
  • 하준석 (전남대학교 응용화학공학부)
  • Ko, Younghee (Applied Chemical Engineering, Chonnam National University) ;
  • Park, Gwanghoon (Applied Chemical Engineering, Chonnam National University) ;
  • Ko, Hang-Ju (Korea Photonics Technology Institute) ;
  • Ha, Jun-Seok (Applied Chemical Engineering, Chonnam National University)
  • 투고 : 2013.09.27
  • 심사 : 2014.03.15
  • 발행 : 2014.03.30

초록

최근 유기태양전지의 효율향상을 위하여 고분자의 PEDOT:PSS 양극(Anode) 버퍼층이 널리 사용되고 있다. 그러나 고효율 태양전지의 개발과 더불어 새로이 적용되고 있는 역구조 유기 태양전지에는 이 같은 친수성의 PEDOT:PSS 고분자가 소수성의 양극이나 광활성층 상에 균일하게 코팅되는 것이 문제점으로 지적되고 있다. 이러한 문제점을 극복하기 위해서 양극 버퍼층으로 $V_2O_5$와 같은 p-type 금속산화물을 사용한 연구가 많이 보고되고 있다. 본 연구에서는 저항을 낮추고 홀 이동도를 향상 시키기 위해 Ag를 삽입층으로 한 $V_2O_5$/Ag/ITO 구조의 다층 박막을 제작하고 Ag두께에 따른 전기적, 광학적, 구조적 특성의 변화에 대하여 살펴보았다. 가시광 영역에서는 Ag 두께가 증가함에 따라 광 투과율이 감소하는 반면 전기적 특성은 향상되는 것을 볼 수 있었다. 광소자의 투명전극산화물로 적합한 구조인지 평가하기 위해 Figure Of Merit(FOM)의 값을 측정하였고, 그 결과 Ag의 두께가 4 nm에서 가장 좋은 특성을 나타냈다. $V_2O_5$/Ag/ITO 구조의 다층 박막은 가시광 영역에서 Ag의 두께가 4 nm일 때 88%의 광 투과율을 나타내었고 저항 값은 $4{\times}10^{-4}{\Omega}cm$로써 광소자로 적합한 구조임을 확인하였다.

Recently, the buffer layers consisting of poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT-PSS) are extensively used to improve power conversion efficiency (PCE) of organic solar cells. However, PEDOT-PSS is not suitable for mass production of organic solar cells due to its intrinsic acid and hygroscopic properties. Moreover, because of chemical reactions between indium tin oxide (ITO) layer and PEDOT-PSS layer, the interface is not stable. For these reasons, alternative materials such as $V_2O_5$ have been developed to be an effective buffer layer. In this work, we used $V_2O_5$/Ag/ITO multilayer structure for the anode buffer layer. With variation of thickness of Ag layer, we investigated the optical and electrical properties of $V_2O_5$/Ag/ITO multi-layer films. As a result, we found that the electrical properties were improved with increasing Ag thickness while optical transmittance decreases in visible wavelength region. From the calculation of figure of merit (FOM) which is used to evaluate proper structure for transparent of optoelectronic, $V_2O_5$/Ag/ITO multilayer electrode was optimized with 4 nm thick Ag layer in optical (88% in transmittance) and electrical ($4{\times}10^{-4}{\Omega}cm$) properties. This indicates that $V_2O_5$/Ag/ITO multilayer electrode could be a candidate for the anode of optoelectronic devices.

키워드

참고문헌

  1. Benanti TL, Venkataraman D. "Organic solar cells: an overview focusing on active layer morphology", Photosynthesis research, 87(1), 73 (2006). https://doi.org/10.1007/s11120-005-6397-9
  2. Bundgaard E, Krebs F. "Low band gap polymers for organic photovoltaics", Solar Energy Materials and Solar Cells, 91(11), 954 (2007). https://doi.org/10.1016/j.solmat.2007.01.015
  3. Ma W, Yang C, Gong X, Lee K, Heeger AJ. Thermally Stable, "Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology", Advenced Functional Materials, 15(1), 1617 (2005). https://doi.org/10.1002/adfm.200500211
  4. S. K. Jang, S. C. Gong and H. J. Chang, "The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active layer", J. Microelectron. Packag. Soc., 17(2), 63 (2010).
  5. S. H. Kim, Y. Choi and H. J. Chang, "Fabrication and Characterization of Organic Solar Cells with Gold Nanoparticles in PEDOT:PSS Hole Transport Layer", J. Microelectron. Packag. Soc., 20(2), 39 (2013). https://doi.org/10.6117/kmeps.2013.20.2.039
  6. Martens T, D'Haen J, Munters T, Beelen Z, Goris L, Manca J, et al." Disclosure of the nanostructure of MDMOPPV: PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM", Synthetic Metals, 138(1-2), 243 (2003). https://doi.org/10.1016/S0379-6779(02)01311-5
  7. Kawano K, Ito N, Nishimori T, Sakai J. "Open circuit voltage of stacked bulk heterojunction organic solar cells", Applied Physics Letters, 88(7), 073514 (2006). https://doi.org/10.1063/1.2177633
  8. Waldauf C, Morana M, Denk P, Schilinsky P, Coakley K, Choulis SA, et al. "Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact", Applied Physics Letters, 89(23), 233517 (2006). https://doi.org/10.1063/1.2402890
  9. You H, Dai Y, Zhang Z, Ma D. "Improved performances of organic light-emitting diodes with metal oxide as anode buffer", Journal of Applied Physics, 101 (2), 026105-3 (2007). https://doi.org/10.1063/1.2430511
  10. Liu H, Avrutin V, Izyumskaya N, Ozgur U, Morkoc H. "Transparent conducting oxides for electrode applications in light emitting and absorbing devices", Superlattices and Microstructures, 48(5), 458 (2010). https://doi.org/10.1016/j.spmi.2010.08.011
  11. Yu J, Wang N, Zang Y, Jiang Y. "Organic photovoltaic cells based on TPBi as a cathode buffer layer", Solar Energy Materials and Solar Cells, 95(2), 664 (2011). https://doi.org/10.1016/j.solmat.2010.09.037
  12. Krebs FC. "Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide", Solar Energy Materials and Solar Cells, 93 (9), 1636-41 (2009). https://doi.org/10.1016/j.solmat.2009.04.020
  13. Tvingstedt K, Inganas O. "Electrode Grids for ITO Free Organic Photovoltaic Devices", Advanced Materials, 19(19), 2893 (2007). https://doi.org/10.1002/adma.200602561
  14. Mohsen Ghasemi Varnamkhasti, Hamid Reza Fallah, Bojtaba Mostajaboddavati, Ali Hassanzadeh. "Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications", Vacuum, 86(9), 1318 (2012). https://doi.org/10.1016/j.vacuum.2011.12.002
  15. Jeong J-A, Kim H-K. "Low resistance and highly transparent ITO-Ag-ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells", Solar Energy Materials and Solar Cells, 93(10), 1801 (2009). https://doi.org/10.1016/j.solmat.2009.06.014
  16. Hung-Wei Wu, Chien-Hsun Chu, Ru-Yuan Yang, Chin-Min Hsiung. "Effects of Mo Thickness on the Properties of AZO/ Mo/AZO Multilayer Thin Films", World Academy of Science, Engineering and Technology, 71, 333 (2012).
  17. Myoung Rae Lee, Chin Soo Hong, Gyeong Rae Kim, Large Band Gap Stuructures and Line Defect in Two Dimensional Photonic Crystal(2D PC), Journal of Natural Sciences of Soonchunhyang University, 14(2), 133 (2008).
  18. KIM E, JIANG Z-T, NO K. "measurement and calculation of optical bandgap of Chromium Aluminum Oxide films", The Japan Society of Applied Physics, 39(1), 4820 (2000). https://doi.org/10.1143/JJAP.39.4820