DOI QR코드

DOI QR Code

Service Life Assessment and Restrain Methods of Carbonation Attack on PC Outer Wall of LNG Storage Tanks

탄산염해에 대한 LNG 저장탱크 PC 외부벽체의 수명평가 및 억제방안

  • Lee, Seung-Rim (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Song, Il-Hyun (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Kim, Han Sang (Department of Mechanical and Automotive Engineering, Gachon University)
  • 이승림 (한국가스안전공사 가스안전연구원) ;
  • 송일현 (한국가스안전공사 가스안전연구원) ;
  • 김한상 (가천대학교 기계.자동차공학과)
  • Received : 2014.03.23
  • Accepted : 2014.04.28
  • Published : 2014.04.30

Abstract

The objective of this paper is to assess the service life and retrain methods of specimens, which were subjected to carbonation attack, obtained from mix proportion of Sam-cheok LNG storage tank under construction. As the results, accelerated-carbonation penetration depths of 7, 28, 56 ages indicated 4.45, 9.19, 13.37mm, and even considering for cover depths of steel of LNG storage tank under real operation, it was enough. In addition, with carbonation velocity coefficient calculated by carbonation penetration depths, the service life to design cover depth(70, 80, 90, 100mm) of PC outer tank of LNG storage tank was 779, 1017, 1287, 1589 years and 466, 609, 771, 951 years, respectively, considering the $CO_2$ concentration in air which account for the 0.03% and 0.05%. Also, the restrain methods to carbonation attack were feasible through controlling the factors affecting the changes of hydration products such as $Ca(OH)_2$, ion composition in pore solution and matter mobility of organization structures within hardened concrete.

본 연구는 현재 신설 중에 있는 삼척 LNG 저장탱크 콘크리트 배합표의 공시체로부터 획득된 촉진 탄산화 시험 결과를 가지고 탄산염해에 대한 내구수명과 그 억제 방안에 대해 평가한 것이다. 그 결과 재령 7일, 28일, 56일에 대한 촉진 탄산화 침투 깊이는 4.45 mm, 9.19 mm, 13.37 mm로 나타났으며, 실제 운영 중 LNG 저장탱크의 철근피복 두께(최소 70 mm부터 최대 100 mm)를 고려하더라도 큰 여유를 보였다 그리고 탄.산화 침투 깊이로부터 획득된 탄산화 속도계수를 가지고 대기 중 환산 $CO_2$ 농도 즉, 0.03%와 0.05%를 각각 고려한 LNG 저장탱크 외조 콘크리트의 설계 피복 두께(70 mm, 80 mm, 90 mm, 100 mm)의 내구수명은 779년, 1,017년, 1,287년, 1,589년과 466년, 609년, 771년, 951년으로 나타났다. 또한, 콘크리트 경화체내 조직구조의 물질이동성 변화와 세공용액의 이온조성 및 수산화칼슘 등 수화생성물의 변화 등에 영향을 미치는 인자들의 조절을 통하여 탄산염해의 억제가 가능할 것으로 보였다.

Keywords

References

  1. C.L., Page and K.W.J., Treadaway, "Aspects of the electrochemistry of steel in concrete", Nature, 297(5862), pp.109-15, (1982) https://doi.org/10.1038/297109a0
  2. Korea Concrete Institute, "Advanced Concrete Engineering", Kimoondang, (2005)
  3. P., Mehta and J.M., Monteiro, "Concrete", 3rd ed., The McGraw-Hill Companies, New York (2004)
  4. S.R., Lee and S.H., Hwang, "An Experimental Study on the Estimation of Chloride Diffusion Coefficient of LNG Storage Tanks", Journal of Energy Engineering, Vol.21, No.2, pp.118-23, (2012) https://doi.org/10.5855/ENERGY.2012.21.2.119
  5. S.R., Lee, H.J., Bang and I.C., Kim, "Service Life Assessment of LNG Storage Tank Using Life-365", Journal of Energy Engineering, pp.68, (2012)
  6. Korea Radioactive Waste Agency, "Counsel for Deterioration Assessment of Silo Concrete", Final Report, (2011)
  7. K.I., Song, K.H., Yang, B.Y., Lee and J.K., Song, "Carbonation Characteristics of Alkali Activated Blast-Furnace Slag Mortar", Journal of Korea Concrete Institute, Vol.24, No.3, pp.315-22, (2012) https://doi.org/10.4334/JKCI.2012.24.3.315
  8. S.P., Kang, Y.S., Kim, H.W., Song and G.Y., Kim, "The Prediction Model of Carbonation Process by $CO_2$ Diffusion Using the Air Permeability Coefficient for Concrete", Journal of Korea Concrete Institute, Vol.22, No.2, pp.209-17, (2010) https://doi.org/10.4334/JKCI.2010.22.2.209
  9. I.S., Yoon, "Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement", Journal of Korea Concrete Institute, Vol.19, No.3, pp.367-75, (2007) https://doi.org/10.4334/JKCI.2007.19.3.367
  10. B.H., Oh, S.K., Lee, M.K., Lee and S.H., Jung, "Influence of Carbonation for Chloride Diffusion in Concrete", Journal of Korea Concrete Institute, Vol.17, No.2, pp.179-89, (2005) https://doi.org/10.4334/JKCI.2005.17.2.179
  11. K.H., Kim and S.W., Cha, "Reliability-Based Service Life Estimation of Concrete in Marine Environment", Journal of Korea Concrete Institute, Vol.22, No.4, pp.595-603, (2010) https://doi.org/10.4334/JKCI.2010.22.4.595
  12. S.W., Kim, J.S., Lee, T.S., Kang, Y.W., Song and C.W., Park, "Service Life Prediction of High Performance Segment Structures under Chloride Environment", Journal of Korea Concrete Institute, Vol.25, No.2, pp.731-2, (2013)
  13. Korea Meteorological Administration, "Report of Global Atmosphere Watch", (2012)
  14. M.H., Kim, B.C., Song, J.S., Ko, S.C., Jung, Y.J., Kwon, G.Y., Kim and S.P., Kang, "A Study on the Evaluation of Deterioration Degree for Reinforced Concrete Apartments in Korea", Journal of Architectural Institute of Korea, Vol.16, No.6, pp.89-94, (2000)
  15. 桝田佳寬.棚野博之, "コンクリ一トの中性化進行豫測モデル", コンクリ一ト工學論文集, Vol.2, No.1, pp.125-33, (1991)
  16. G.Y., Kim, Y.S., Kim, B.S., Cho and M.H., Kim, "Performance Based Durability Design of Concrete Structures Considering Carbonation", Journal of Korea Concrete Institute, Vol.18, No.4, pp.24-31, (2006)
  17. G.J., Osborne, "Durability of Portland blastfurnace slag cement concrete", Cement & Concrete Composite, Vol.21, No.1, pp.11-21, (1999) https://doi.org/10.1016/S0958-9465(98)00032-8
  18. M., Collepardi, S., Collepardi, J.J., Ogoumah Olagot and F., Simonelli, "The Influence of Slag and Fly Ash on the Carbonation of Concretes", Proceeding eight CANMET/ACI international conference, Publication SP-211, pp.483-94, (2004)
  19. P., Sulapha, S.F., Wong, T.H., Wee and S., Swaddiwudhipong, "Carbonation of Concrete Containing Mineral Admixtures", Journal of Materials in Civil Engineering, Vol.15, No.2, pp.134-43, (2003) https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(134)
  20. J.S., Ryou, H.S., Kim and J.B., Lee, "Combined Deterioration of Concrete Durability with Respect to Carbonation", Journal of Korea Concrete Institute, Vol.22, No.4, pp.36-8, (2010)