DOI QR코드

DOI QR Code

Characteristics of an Optical Waveguide with Two Identical Elliptical Structures

두 개의 동일한 타원형 구조를 지닌 광 도파관의 특성

  • Jang, SeongHo (Department of Mechanical Eng., KNUT (Korea National University of Transportation)) ;
  • Chung, SangHo (Industry-Academic Cooperation Foundation, KNUT) ;
  • Yi, SeungHwan (RIC(Regional Innovation Center), KNUT)
  • 장성호 (한국교통대학교 기계공학과) ;
  • 정상호 (한국교통대학교 산학협력단) ;
  • 이승환 (한국교통대학교 지역혁신센터(RIC))
  • Received : 2014.03.31
  • Accepted : 2014.04.25
  • Published : 2014.04.30

Abstract

A unique optical waveguide structure is proposed to enhance the optical characteristics of alcohol screening sensors. This structure is then simulated. The structure consists of two elliptical waveguides that have a common focus to one side and has an IR source and detector at each of the other focal points of the ellipses. When the angle between the two elliptical waveguides is increased from 30 degrees to 90 degrees, the maximum level of irradiance is greatly decreased, falling from $2.23{\times}10^6 W/m^2$ to $5.74{\times}10^5W/m^2$. However, the diameter of the incident rays is at a minimum of 1.86mm and the total incident flux is less than 10% lower when compared to the structure at $90^{\circ}$. It can be seen from the simulation results that this structure might enhance the sensitivity of an optical gas sensor which has a large absorption wavelength.

본 논문에서는 알코올 측정용 센서의 광학적 특성 향상을 위한 고유한 광학적 구조를 제안하였으며, 모의해석을 실시하였다. 광 도파관은 한쪽에 공통초점을 갖는 두 개의 타원형 광 도파관으로 구성되었으며, 각 광 도파관의 서로 다른 초점에 적외선 광원과 적외선 센서를 갖는다. 두 타원형 광 도파관의 각도가 30도에서 90도로 증가시켰을 때, 단위면적당 최대 입사광량은 $2.23{\times}10^6W/m^2$에서 $5.74{\times}10^5W/m^2$로 감소하였다. 그러나 조사 빔의 반지름은 1.86 mm로 최소값을 나타내었고, 전체 입사 에너지는 90도 각도를 갖는 구조와 비교하여 약 10 % 작은 값을 보였다. 모의해석 결과로부터 본 논문에 제안한 구조는 긴 흡수파장을 갖는 광학적 가스센서의 감도향상에 기여할 것으로 판단된다.

Keywords

References

  1. T. Seiyama, Editor, Chemical Sensor Technology, vol. 1, Kodansha LTD and Elsevier, Tokyo, (1988).
  2. J.H. Yoon and J.S. Kim, "Study on the MEMStype gas sensor for detecting a nitrogen oxide gas", Solid State Ionics, 192, 668-671, (2011). https://doi.org/10.1016/j.ssi.2010.09.049
  3. B.J. Kim and J.S. Kim, "Gas sensing characteristics of MEMS gas sensor arrays in binary mixed-gas system", Mater. Chem. Phys., 138, 366-374, (2013). https://doi.org/10.1016/j.matchemphys.2012.12.002
  4. S.E. Moon, H.K. Lee, N.J. Choi, J. Lee, C.A. Choi, W.S. Yang, J. Kim, J.J. Jong, and D.J. Yoo, "Low power consumption micro $C_2H_5OH$ gas sensor based on micro-heater and screen printing technique", Sens. Actuators B, 187, 598-603, (2013). https://doi.org/10.1016/j.snb.2013.05.002
  5. S. Tabata, K. Higaki, H. Ohnishi, T. Suzuki, K. Kunihara, M. Kobayashi, "A micromachined gas sensor based on a catalytic thick film/$SnO_2$ thin film bilayer and a thin film heater Part 2: CO sensing", Sens. Actuators B, 109, 190-193, (2005). https://doi.org/10.1016/j.snb.2005.05.012
  6. K.C. Kim, S.M. Cho, and H.G. Choi, "Detection of ethanol gas concentration by fuel cell sensors fabricated using a solid polymer electrolyte", Sens. Actuators B, 67, 194-198, (2000). https://doi.org/10.1016/S0925-4005(00)00398-1
  7. L. F. Zhu, J.C. She, J.Y. Luo, S.Z. Deng, J.Chen, X.W. Ji, N.S. Xu, "Self-heated hydrogen gas sensors based on Pt-coated $W_{18}O_{49}$ nanowire networks with high sensitivity, good selectivity and low power consumption", Sens. Actuators B, 153, 354-360, (2011). https://doi.org/10.1016/j.snb.2010.10.047
  8. J. Gao, J.P. Viricelle, C. Pijlat, P. Breuil, P. Vernoux, A. Boreave, and A.G. Fendler, "Improvement of the $NO_X$ selectivity for a planar YSZ sensor", Sens. Actuators B, 154, 106-110, (2011). https://doi.org/10.1016/j.snb.2010.01.033
  9. J.S. Park, H.C. Cho, and S.H. Yi, "NDIR CO gas sensor with improved temperature compensation", Procedia Eng., 5, 303-306, (2010). https://doi.org/10.1016/j.proeng.2010.09.108
  10. R. Muda, E. Lewis, S.O'Keeffe, G. Dooly, and J. Clifford, "A compact optical fibre based mid-infrared sensor system for detection of high level carbon dioxide emission in exhaust automotive application", Procedia Chem., 1, 593-596, (2009). https://doi.org/10.1016/j.proche.2009.07.148
  11. B. Hok, H. Petterson, A.K. Andersson, S. Hassl, and P. Akerlund, "Breath analyzer for alcolocks and screening devices", IEEE Sens., 10, 10-15, (2010). https://doi.org/10.1109/JSEN.2009.2035204
  12. J.S. Park and S.H. Yi, "Nondispersive infrared rays CH4 gas sensor using focused infrared beam structures", Sens. Mater., 23, 147-158, (2011).
  13. S.W. Moon and Y.G. Lim, "NDIR Gas", Korea Patent 101108495000, Jan. 16 (2012).
  14. H.G.E. Martin, "Gas sensor", U.S. Patent 6,194,735 B1, Feb. 27 (2001).
  15. H.S. Lim, T.Y. Kim, and J.S. Lee, "Non-dispersive infrared gas analyzer having a lens", Korea Patent 1009596110000, May 17 (2010).

Cited by

  1. NDIR Ethanol Gas Sensor with Two Elliptical Optical Structures vol.168, 2016, https://doi.org/10.1016/j.proeng.2016.11.122
  2. Temperature Dependency of Non-dispersive Infrared Carbon Dioxide Gas Sensor by Using White-Cell Structure vol.25, pp.5, 2016, https://doi.org/10.5369/JSST.2016.25.5.377
  3. Temperature Dependency of Non-dispersive Infrared Carbon Dioxide Gas Sensor by using Infrared Sensor for Compensation vol.25, pp.2, 2016, https://doi.org/10.5369/JSST.2016.25.2.124
  4. Characteristics and Temperature Compensation of Non-Dispersive Infrared (NDIR) Alcohol Gas Sensors According to Incident Light Intensity vol.18, pp.9, 2018, https://doi.org/10.3390/s18092911