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A NEW CLASS OF CYCLIC CODES USING ORDERED

POWER PRODUCT OF POLYNOMIALS

ANKITA GAUR∗ AND BHUDEV SHARMA

Abstract. The paper introduces a new product of polynomials defined

over a field. It is a generalization of the ordinary product with inner poly-
nomial getting non-overlapping segments obtained by multiplying with co-
efficients and variable with expanding powers. It has been called ‘Ordered
Power Product’ (OPP). Considering two rings of polynomials Rm [x] =

F [x] moduloxm − 1 and Rn [x] = F [x]moduloxn − 1 , over a field F, the
paper then considers the newly introduced product of the two polynomial
rings. Properties and algebraic structure of the product of two rings of

polynomials are studied and it is shown to be a ring. Using the new type
of product of polynomials, we define a new product of two cyclic codes and
devise a method of getting a cyclic code from the ‘ordered power product’
of two cyclic codes. Conditions for the OPP of the generators polynomials

of component codes, giving a cyclic code are examined. It is shown that
OPP cyclic code so obtained is more efficient than the one that can be
obtained by Kronecker type of product of the same component codes.
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1. Introduction

Linear algebra and in particular vector spaces are important mathematical
structures and have numerous applications. There are areas, for example coding
theory, finite geometries and statistical theory of designs, where vector spaces
provide basic foundations. There it is felt that higher order and more efficient
structures can be developed with advantage by suitably composing the lower
order structures. There is thus interest in developing new mathematical compo-
sition laws on vectors, matrices and polynomials. Elias (1954) used Kronecker
product of matrices to develop higher efficiency codes by combination of lower
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order codes. The method was powerful, but it could develop only a sparse class
of product codes and the all important duality property was lost. Sharma (2008),
introduced a new concept of matrix-multiplication called the partitioned prod-
uct of matrices, and obtained a rather large class of rank-partitioned product
codes in which the duality property was preserved. Cyclic codes, as is known,
are ideally suited for implementation through shift registers. Most important
codes like BCH, Goppa codes etc. are cyclic codes, which are best characterized
through their generator polynomials. Composing higher order cyclic codes from
lower order codes in terms of their generator polynomials has not been explored
at any length. The reason for not been able to do that is that there does not
exist a method of multiplying two polynomials leading to what may be used to
consider product of two cyclic codes. In this paper, we start by introducing a
new product of two polynomials defined over a field. It is a generalization of
the ordinary product. For convenience we call the two polynomials as outer and
inner polynomials. The new defined product then results in non-overlapping
segments obtained by multiplying it with coefficients of outer polynomials and
expanding powers of the variable. It is called Ordered Power Product and has
elegant algebraic properties leading to new algebraic structures. Paper carries a
section on applications of the above concepts in developing product of two cyclic
codes, in terms of the new product defined by us of two polynomials. Paper is
organized as follows: Section 2 gives basic definitions required for later study.
In Section 3, the Ordered Power Product of two polynomials in introduced and
its algebraic properties are reported. Section 4 carries Applications of Ordered
Power Product of polynomials in Coding Theory and an example is given to
illustrate the a cyclic code arising from the OPP of two cyclic codes. In Section
5, we refer to further work under study.

2. Main results

For our purpose, we begin with following simple well known algebraic ideas
of polynomials over a field F. For details, one may refer to any standard text on
Algebra as also Peterson and Weldon 1972 Chapters 2 and 6.

Definition 2.1. Ring of polynomials: Given a field F , we can consider a poly-
nomial as,

f (x) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1

where coefficients a0,a1, a2, ..., an−1 ∈ F . The collection of all polynomials over
field F , denoted by F [x] under usual addition and product of polynomials, forms
a ring, called ‘ring of polynomials over F ’.

Definition 2.2. Ring of polynomials : Algebra of Polynomial Residue Classes
(Refer Peterson and Weldon (1972) The residue classes of the ring of polynomials
F [x] modulo (xn − 1) a polynomial f (x) of degree n form a commutative linear
algebra of dimension n over the coefficient field F.
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Definition 2.3. Cyclic code: An(n, k) block code C is said to be cyclic if it is
linear and if for every code word C = (c0, c1, c2, ..., cn−1) ∈ C, its right cyclic
shift C̄ = (cn−1, c0, c1, ..., cn−2) ∈ C̄. An cyclic code is generated by a polynomial
g (x) of degree n− k that is a factor of (xn − 1).

3. New Product - Ordered Power Product of polynomials

Linear algebraic structures, as is well known, are studied with advantage
through polynomials. While direct polynomial addition and multiplications are
commonly used as the operations on polynomial, wider algebraic structures and
applications are done by considering polynomial algebra over a field. Here we
shall consider polynomials over a field F , and consider the set of all polynomials
F [x]. We will be considering structure of F [x] modulo some polynomial, say,
g (x). It is proposed to define a new type of composition on polynomials, in which
order of the polynomials multiplied is retained and segments of the product arise
in terms of rising powers, we name it as ‘Ordered Power product.’ To motivate
the new product, let us look at ordinary product of two polynomials λ (x) =
c0+c1x+c2x

2+...+cm−1x
m−1 and V (x) = a0+a1x+a2x

2+...+an−1x
n−1,then

λ (x) ∗ V (x) = c0V (x) + c1xV (x) + c2x
2V (x) + ...+ cm−1x

m−1V (x) .

Generalizing this by considering suitably indexed powers of x in the segments
above, we arrive at the following what we call as the ‘Ordered power Product’
(OPP).

Definition 3.1. Ordered Power Product of Polynomials in non-overlapping
sifting segments: Letλ (x) = c0 + c1x + c2x

2 + ... + cm−1x
m−1 and V (x) =

a0 + a1x+ a2x
2 + ...+ an−1x

n−1 be two polynomials of degree m− 1 and n− 1
respectively over a field F. The ordered power product of λ (x)and V (x) (in nth
power of in different segments), denoted by λ (x) ∗ V (x) , is defined as

λ (x) ∗ V (x) = λ(xdegree(V )+1)V (x).

In short we shall call it ‘Ordered Power Product’ (OPP) or ∗product of λ (x)
and V (x).

Remark 3.1. Clearly, the degree of the product polynomial λ (x) ∗ V (x) is
(m− 1)n+ (n− 1) = mn− 1 .

Remark 3.2. We call it ‘ordered’ because as proved below, unlike ordinary
product it is not commutative.

Remark 3.3. Just for convenience, in the product so defined, we will refer to
λ (x) as outer polynomial and V (x) as inner polynomial.

Example 1. Let λ (x) = 1 + 2x + 4x3 + 5x4be a polynomial (outer) of degree
4, with m = 5 and V (x) = 2+ x2 + x6be the polynomial of degree 6 with n = 7
then

λ (x) ∗ V (x)
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= 1
(
2 + x2 + x6

)
+ 2x7

(
2 + x2 + x6

)
+ 0x14

(
2 + x2 + x6

)
+ 4x21

(
2 + x2 + x6

)
+ 5x28

(
2 + x2 + x6

)
= 2 + x2 + 5x6 + 2x9 + 10x13 + 8x21 + 4x23 + 20x27 + 10x28 + 5x30 + 5x34

this example also verifies the degree of outer product of two polynomials λ (x) ∗
V (x) mentioned above.

Definition 3.2. Vector Equivalence of OPP: Interestingly, if polynomials are
replaced by their equivalent vectors

λ (x) = c0 + c1x+ c2x
2 + ...+ cm−1x

m−1 ≈ (c0, c1, c2, ..., cm−1) = λ and

V (x) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1 ≈ (a0, a1, a2, ..., an−1) = V

then it can be easily seen that λ ∗ V is the Kronecker product of vectorsλ and
V .

Properties of Ordered Power of Product of Polynomials
(i) Non Commutativity: The * product of polynomials is in general non com-
mutative, i.e.,

λ (x) ∗ V (x) ̸= V (x) ∗ λ (x) .
Proof: Choosing λ (x) andV (x) as above, we have

λ (x) ∗ V (x) = λ
(
xdeg(V )+1

)
∗ V (x)

= c0V (x) + c1x
nV (x) + c2x

2nV (x) + ...+ cm−1x
(m−1)nV (x)

(1)

Also,

V (x) ∗ λ (x) = V
(
xdeg(λ)+1

)
∗ λ (x)

= a0λ (x) + a1x
mλ (x) + a2x

2mλ (x) + ...+ am−1x
(n−1)mλ (x)

(2)

In general (1) and (2) are different and this proves the result.
(ii) Associativity : The * product of two polynomials is in general associative,
i.e.,

λ (x) ∗ (U (x) ∗ V (x)) = (λ (x) ∗ U (x)) ∗ V (x) .

Proof: Associativity: in the above notation associativity is easy to prove by
calculations like

(L(x) ∗ U(x)) ∗ V (x) = (λ(xdeg(U)+1)U(x)) ∗ V (x)

= λ

((
xdeg(V )+1

)deg(U)+1

U
(
xdeg(V )+1

))
V (x)

= λ(x(deg(V )+1)(deg(U)+1))U(xdeg(V )+1))V (x)

= λ(x(deg(V )deg(U)+deg(V )+deg(U+1))U(xdeg(V )+1))V (x)

= λ (x) ∗
(
U
(
xdeg(V )+1V (x)

))
= λ (x) ∗ (U (x) ∗ V (x))
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(iii) Distributive over addition: The * product of two polynomials is such that:
(a) The outer polynomial distributes over the sum of inner polynomials,

λ (x) ∗ (U (x) + V (x)) = (λ (x) ∗ U (x)) + λ (x) ∗ V (x) .

(b) The inner polynomial distributing over the sum of outer polynomials,

(C (x) +D (x)) ∗ V (x) = (C (x) ∗ V (x)) +D (x) ∗ V (x) .

Where U (x) and V (x) are of same degree n−1 and C (x) and D (x) are of same
degree m− 1 .
Proof: We prove both the forms

λ(x) ∗ (U(x) + V (x)) = λ(xdeg(UorV )+1)(U(x) + V (x))

= λ(xdeg(U)+1)U(x) + λ(xdeg(V )+1)V (x)

= (λ (x) ∗ U (x)) + λ (x) ∗ V (x) .

(C(x) +D(x) ∗ V (x)) = C
(
xV (x)+1

)
V (x) +D

(
xV (x)+1

)
V (x)

= (C (x) ∗ V (x)) +D (x) ∗ V (x) .

4. Ordered Power Product of Rings of Polynomials

In this section we extend the idea considered above to product of two sets of
polynomials defined over the same field F. In particular, let us consider two rings
of polynomials namely, Rm [x]modulo (xm − 1) andRn [x]modulo (xn − 1), where
m and n are any positive integers. Obviously these rings contain respectively all
polynomials of degree m− 1, n− 1 and less.

Definition 4.1. Let λj (x) = c0j + c1jx+ c2jx
2+ ...+ c(m−1)jx

m−1 ∈ Rm (x)for
different values of j be polynomials of degree m − 1 or less and Vi (x) = a0i +
a1ix+ a2ix

2 + ...+ a(n−1)ix
n−1 ∈ Rn (x), for different values ofi, be polynomials

of degree n − 1 or less. We define the set of ordered power product of Rm [x]
and Rn [x] as

Γ (x) = Rm (x) ∗Rn (x) = {λj (x) ∗ Vi (x) | λj (x) ∈ Rm (x) , Vi (x) ∈ Rn (x)}.

Theorem 4.2. If Rm [x] = F (x)modulo (xm − 1), Rn [x] = F (x)modulo (xn − 1),
m and n being any positive integers, are two rings of polynomial over a field F,
then

Γ (x) = Rm (x) ∗Rn (x) = {λj (x) ∗ vi (x) | λj (x) ∈ Rm (x) , vi (x) ∈ Rn (x)}

is a ring of polynomials of degree mn – 1, under ordinary addition and ordered
product of elements of Γ (x)modulo (xm − 1, xn − 1) over F.

Proof. Proof is simply followed by the definition. �
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5. Applications of OPP of Polynomials in Coding Theory

In this section, we consider cyclic binary codes represented by their generator
polynomials and study the codes obtained by their OPP-composition. It may
be pointed out that in the binary case, (xn − 1) may be taken as (xn + 1) , and
that 1+1 = 0. Since cyclic codes of length n are generated by factors of (xn − 1),
we next give some useful results for getting its factors.

Lemma 5.1. For p and q distinct prime numbers and r and s are natural num-
bers, we have

(i) xp + 1 = (1 + x)
(
1 + x+ x2 + ...+ xp−1)

(ii) xpr + 1 = (1 + x)
(
1 + x+ x2 + . . .+ xp−1) (1 + xp + x2p + . . .+ x(p−1)p

)
. . .(

1 + xpr−1

+ x2pr−1

+ . . .+ x(p−1)pr−1
)

(
1 + xpr + x2pr−1

+ . . .+ x(q−1)pr−1
)
. . .(

1 + xqpr + x2qpr−1

+ . . .+ x(q−1)qpr−1
)

(
1 + xqs−1pr + x2qs−1pr−1

+ ...+ x(q−1)qs−1pr−1
)

= (1 + x)

α=r∏
α=1

(
1 + xpα−1

+ x2pα−1

+ ...+ x(p−1)pα−1
)

(iii) xprps + 1 = (1 + x)
(
1 + x+ x2 + · · ·+ xp−1) (1 + xp + x2p + · · ·+ x(p−1)p

)
. . .

(
1 + xpr−1

+ x2pr−1

+ · · ·+ x(p−1)pr−1
)
.

Proof. The results can be easily verified, and extended for , for any n when n is
expressed as product of powers of primes. �

Theorem 5.2. If (n1, k1) and (n2, k2) are two cyclic codes with g1 (x) and g2 (x)
as their generator polynomials then the * product of their generator polynomials
given by g (x) = g1 (x)∗g2 (x) of degree (n1 − k1)n2+(n2 − k2)code, will generate
a cyclic(n, k) code, where n = n1n2 and k = (k1 − 1)n2 + k2, whenever g2 (x)
divides xn − 1.

Proof. Let g (x) = g1 (x) ∗ g2 (x). It can be written as a simple product:
g (x) = g1 (x

n2) g2 (x) where g1 (x) and g2 (x) are divisors of x
n1−1 and xn2−1 re-

spectively. For g (x)to represent a cyclic code of lengthn1n2−1, g (x) must a fac-
tor of xn1n2−1. So we examine the conditions under which g (x) = g1 (x) ∗ g2 (x)
is a divisor of xn1n2 − 1 . First we show that g1 (x

n2) is a divisor of xn1n2 − 1.
This follows from the fact that g1 (x) is a divisor of xn1−1, and by replacing x

by xn2 . Thus we get that g1 (x
n2) is a divisor of (xn2)

n1−1
= xn1n2 − 1. It

remains to investigate the conditions forg2 (x) is a factor ofxn1n2 − 1. This will
not happen for all choices of n1n2, as is evident by the Example 3 below. We
therefore can use the result of the Lemma above for determining ifg2 (x) divides
xn1n2 − 1. In fact any one or products of any numbers of these factors can be
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taken forg2 (x) to get the *-product cyclic code from generator polynomials of
component codes. �

Note: It may have been noted that while choice of , the inner-polynomial,
is limited, there is no limitation on choice of outer polynomial in forming OPP
codes.

Theorem 5.3. If (n1, k1)and(n2, k2) are two cyclic codes with g1 (x)andg2 (x)
as their generator polynomials and g2 (x)dividesx

n1n2 − 1 then the * product
g (x) = g1 (x) ∗ g2 (x) generates (n1n2, k)code, where k = (k1 − 1)n2 + k2. Also
then k − 1 code polynomials g (x) , xg (x) , x2g (x) , ..., xk−1g (x) span cyclic code
C.

Proof. The proof follows directly from the definition of cyclic code generated by
g(x). �
Example 2. Let us consider two cyclic codes C1andC2 where C1 is (7, 4) code
and C2 is (3, 1) cyclic code with generator polynomials g1 =

(
1 + x+ x3

)
and

g2 =
(
1 + x+ x2

)
respectively. Then

g (x) = 1 + x+ x2 + x3 + x4 + x5 + x9 + x10 + x11

xg (x) = x+ x2 + x3 + x4 + x5 + x6 + x10 + x11 + x12

x2g (x) = x2 + x3 + x4 + x5 + x6 + x7 + x11 + x12 + x13

x3g (x) = x3 + x4 + x5 + x6 + x7 + x8 + x12 + x13 + x14

x4g (x) = x4 + x5 + x6 + x7 + x8 + x9 + x13 + x14 + x15

x5g (x) = x5 + x6 + x7 + x8 + x9 + x10 + x14 + x15 + x16

x6g (x) = x6 + x7 + x8 + x9 + x10 + x11 + x15 + x16 + x17

x7g (x) = x7 + x8 + x9 + x10 + x11 + x12 + x16 + x17 + x18

x8g (x) = x8 + x9 + x10 + x11 + x12 + x13 + x17 + x18 + x19

x9g (x) = x9 + x10 + x11 + x12 + x13 + x14 + x18 + x19 + x20

Example 3. Let us consider two cyclic codes C1andC2 where C1 is (3, 2) code
and C2 is (7, 4) cyclic code with generator polynomials g1 = (1 + x) and g2 =(
1 + x+ x3

)
respectively. Then

g1 (x) ∗ g2 (x) = 1 + x+ x3 + x7 + x8 + x10.

Here g2 (x) =
(
1 + x+ x3

)
is not a divisor of x21 − 1 .

Theorem 5.4. If two linear binary cyclic codes (n1, k1) and (n2, k2) have rates
R1 and R2 then the rate R of their cyclic Code is an increasing function of the
rate of either component code.

Proof. Let R be the rate of the product cyclic code. Then, we have

R =
(k1−1)n2 + k2

n1n2
=

(k1−1)n2

n1n2
+

k2
n1n2

= R1+
(R2−1)R1

k1
=

1

k1
(R1 (k1 − 1) +R1R2)
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R−R1R2 =
1

k1
(R1 (k1 − 1) +R1R2)−R1R2 =

k1 − 1

k1
R1 (1 +R2)

and trivially, (R = R1R2), when k = 1. In general the difference is directly
proportional to R1, and increases with R2. This shows that the newly introduced
OPP cyclic codes are a new class of codes that have rates better than those that
be obtained by their Kronecker product codes. �

6. Concluding Remarks

We have considered ordered power product of two polynomials in such powers
of x that the various segments of the inner polynomial are laterally advanced
without having overlaps amongst them, with coefficients multiplied by those of
the outer polynomial. For this choice the motivation was to consider a new
composition suitable for developing new product type of codes, which are more
efficient. However, an ordered power product may be defined more generally,
when this is not the case, that is when λ (x) = c0 + c1x+ c2x

2 + ...+ cm−1x
m−1

and V (x) = a0 + a1x + a2x
2 + ... + an−1x

n−1; butλ (x) ∗ V (x) = c0V (x) +
c1x

kV (x) + c2x
2kV (x) + ... + cm−1x

(m−1)kV (x). where k < n, or even when
k > n . In such cases we can perhaps use the notation for OPP using an index
like ∗k −opp. These interesting cases are being studied separately.
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