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STABILITY ANALYSIS OF AN HIV PATHOGENESIS MODEL

WITH SATURATING INFECTION RATE AND TIME DELAY†

MAOXIN LIAO∗, SA ZHAO AND MANTING LIU

Abstract. In this paper, a mathematical model for HIV infection with
saturating infection rate and time delay is established. By some analytical
skills, we study the global asymptotical stability of the viral free equilibrium

of the model, and obtain the sufficient conditions for the local asymptot-
ical stability of the other two infection equilibria. Finally, some related
numerical simulations are also presented to verify our results.
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1. Introduction

In recent years, much great attention has been paid to the HIV pathogenesis
model, and a lot of meaningful results have been obtained (for example, see
[1-12, 16, 18]). By analysing these models, scholars had obtained much knowl-
edge about the mechanism of HIV infection, which enhanced the progress in
understanding of HIV and its drug therapies.

It is well known that the following HIV infection model with immune response
was investigated by Perelson et al. in [2].

dx(t)
dt = s− dx(t)− kx(t)v(t),

dy(t)
dt = kx(t)v(t)− δy(t)− py(t)z(t),

dv(t)
dt = Nδy(t)− µv(t),

dz(t)
dt = f(x, y, z)− bz(t),

(1)

Received August 10, 2013. Revised November 20, 2013. Accepted November 25, 2013.
∗Corresponding author. †This work was supported by Hunan Provincial Natural Science Founda-

tion of China (No. 13JJ3075), Soft Science Fund of Science and Technology Department of Hunan

Province (No. 2011ZK3066), Fund of University of South China(No. 2011XQD49, No. 2013XCX11),

and the construct program in USC.

c⃝ 2014 Korean SIGCAM and KSCAM.

475



476 Maoxin Liao, Sa Zhao and Manting Liu

where x(t), y(t), v(t) and z(t) represent the concentrations of susceptible cells,
infected cells, virus particles and CTLs at time t, respectively. The parame-
ter s(s > 0) is the rate of the new target cells generated from sources. The
uninfected cells die at a rate of d, and k(k ≥ 0) is the constant which describes
the infection rate. Once susceptible cells are infected we can assume that they
die at rate δ due to the action of free virus particles, and release N new virus
particles during their lifetime. Thus, on average, the virus is produced at rate
Nδy(t) and µ is its death rate. The infected cells die at a rate of p due to the
action of immune system. The function f(x, y, z) characterizes the rate of im-
mune response which is activated by the infected cells. Finally, b stands for the
death rate for CTLs.

In [15], Nowak and Bangham assumed that the production of CTLs is not
only dependent on the concentration of the infected cells, but also on the con-
centration of the CTLs, and choose f(x, y, z) = cy(t)z(t) (see, [2]), the model
(1) can be modified as follows:

dx(t)

dt
= s− dx(t)− kx(t)v(t),

dy(t)

dt
= kx(t)v(t)− δy(t)− py(t)z(t),

dv(t)

dt
= Nδy(t)− µv(t),

dz(t)

dt
= cy(t)z(t)− bz(t).

(1
′
)

Liu [20] analyzed the stability of model (1
′
). The infection rate between the

HIV virus and susceptible cells may not be a simple linear relationship in [1],
therefore we can consider the saturating infection rate into the model, which is
mentioned in [12]. In addition, time delay can not ignored in model for virus
production, since susceptible cells which is infected by virus generating new
virus may need a period of time. Hence, time delays paly a significant role in
the dynamical properties of HIV pathogenesis models.

Zhu and Zou [4] incorporated a delay into the cell infection equation in model

(1
′
) and proposed the following model:

dx(t)

dt
= s− dx(t)− kx(t)v(t),

dy(t)

dt
= ke−δτx(t− τ)v(t− τ)− δy(t)− py(t)z(t),

dv(t)

dt
= Nδy(t)− µv(t),

dz(t)

dt
= cy(t)z(t)− bz(t).

(2)

In this paper, we incorporate a delay into the virus production equation and
saturating infection rate into the infection equation in model (2). Moreover, we
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consider the lower activity function x(t)v(t)
1+av(t) of the virus particles to susceptible

cells. Further, we propose the following model:

dx(t)

dt
= s− dx(t)− kx(t)v(t)

1 + av(t)
,

dy(t)

dt
=

kx(t)v(t)

1 + av(t)
− δy(t)− py(t)z(t),

dv(t)

dt
= Nδe−mτy(t− τ)− µv(t),

dz(t)

dt
= cy(t)z(t)− bz(t),

(3)

where the state variables x(t), y(t), v(t), z(t) and the parameters in system (3)
have the same biological meanings as in the system (1). a is a constant which
is greater than zero. τ denotes the lag between the time that the virus infects
susceptible cells and the time that the infected cells generates new virus. the
term e−mτ accounts for cells that have been infected at time t but die before
releasing productively virus τ time units later.

The novelty of the model (3) is that it includes both saturating infection
rate in the infection equation and time delay in the virus production equation,

and that we consider the lower activity function x(t)v(t)
1+av(t) of the virus particles to

susceptible cells.
The remainder of the paper is organized as follows. In Section 2, some useful

preliminaries are given. Section 3 is dedicated to the stability of the viral free
equilibrium, which is obtained by employing Liapunov function. In Section 4 and
Section 5, by carrying out a detailed analysis on the transcendental characteristic
equation of the linearized systems at the two infected equilibria, we respectively
get sufficient conditions for locally asymptotical stability of the two equilibria.
Further, some related numerical simulations are illustrated to verify conclusions
in Section 6. Finally, some conclusions are given.

2. Preliminaries

In this section, in order to prove our main results in this paper, we shall
consider the positivity and boundaries of solutions of system (3). After that,
three equilibria and the basic reproduction number R0 are also given.

LetX = C([−τ, 0];R4) be the Banach space of continuous function form [−τ, 0]
to R4 equipped with the norm

∥ φ ∥= sup
−τ≤θ≤0

| φ(θ) |,

where φ ∈ C. By fundamental theory of FDEs and biological reasons, there is a
unique solution (x(t), y(t), v(t), z(t)) to system (3) with initial conditions:{

x(θ) ≥ 0, y(θ) ≥ 0, v(θ) ≥ 0, z(θ) ≥ 0, θ ∈ [−τ, 0]

(x(θ), y(θ), v(θ), z(θ)) ∈ X.
(4)
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The following Lemmas are useful.

Lemma 2.1. Suppose that x(t), y(t), v(t), z(t) is the solution of system (3) sat-
isfying initial conditions (4). Then x(t) ≥ 0, y(t) ≥ 0, v(t) ≥ 0, z(t) ≥ 0 for
all t ≥ 0.

Proof. Form each equation of the system (3), we can obtain

x(t) = x(0)e−
∫ t
0
(d+k

v(ε)
1+av(ε)

)dε +

∫ t

0

se−
∫ t
η
(d+k

v(ε)
1+av(ε)

)dεdη,

y(t) = y(0)e−
∫ t
0
(δ+pz(ε))dε +

∫ t

0

k
x(η)v(η)

1 + av(η)
e−

∫ t
η
(δ+pz(ε))dεdη,

v(t) = v(0)e−µt +

∫ t

0

Nδy(η − τ)e−mτe−µ(t−η)dη,

z(t) = z(0)e
∫ t
0
(cy(ε)−b)dε.

Obviously, x(t) ≥ 0, z(t) ≥ 0 for all t > 0. Next we only prove y(t) ≥ 0, v(t) ≥ 0.
Suppose that y(t) ≥ 0 does not hold. Then there exists t1 > 0, t1 is the first

point which pass through the x-axis and make y(t) < 0, which satisfies y(t1) = 0
and y′(t1) < 0. We can obtain by the second equation of the system (3) as
follows:

y′(t1) = k
x(t1)v(t1)

1 + av(t1)
− δy(t1)− py(t1)z(t1) = k

x(t1)v(t1)

1 + av(t1)
< 0. (5)

If t ∈ [0, t1], then

y(t1) ≥ 0, v(t1) = v(0)e−µt1 +

∫ t1

0

Nδy(η − τ)e−mτe−µ(t1−η)dη ≥ 0,

and x(t) ≥ 0 for all t ≥ 0. We get

y′(t1) = k
x(t1)v(t1)

1 + av(t1)
≥ 0.

This is contradicted with (5), then y(t) ≥ 0. By a recursive demonstration and
initial conditions, we can easily get v(t) ≥ 0. The proof is complete. �

Lemma 2.2. Suppose that x(t), y(t), v(t), z(t) are the solution of system (3),
each of them is bounded.

Proof. We define

F (t) = x(t) + y(t) +
emτ

2N
v(t+ τ) +

p

c
z(t), q = min{d, δ

2
, µ, b}.

For boundedness of the solution, we define

F ′(t) = x′(t) + y′(t) +
emτ

2N
v′(t+ τ) +

p

c
z′(t)

= s− dx(t)− δ

2
y(t)− emτ

2N
µv(t+ τ)− pb

c
z(t)
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< s− q[x(t) + y(t) +
emτ

2N
v(t+ τ) +

p

c
z(t)]

= s− qF (t).

From Lemma 2.1 we know the solution of system (3) is positive, which implies
that F (t) is bounded, and so are x(t), y(t), v(t) and z(t). The proof is complete.

�
Now, we give three equilibria for system (3) and the basic reproduction num-

ber R0. Define that

R0 =
ksNe−mτ

dµ
,

where R0 is the basic reproduction number.
(1) When R0 < 1, we can obtain the first equilibrium

E0 = (
s

d
, 0, 0, 0)

which implies that the virus are absent. E0 is the only biologically meaningful
equilibrium.

(2) When R0 > 1, R1 = kscN
dcµemτ+(da+k)Nδb < 1. Besides E0, system (3) has the

second biologically meaningful equilibrium E1 which represents that the virus
are present and CTLs are absent, that is,

E1 = (x1, y1, v1, z1) =

(
sNa+ µemτ

N(da+ k)
,

dµemτ

N(da+ k)
(R0 − 1),

d

da+ k
(R0 − 1), 0

)
.

(3) When R1 > 1, the last equilibrium in system (3) is E2 which represents
that both virus and CTLs are present.

E2 = (x2, y2, v2, z2) =

(
s(cµemτ +Nδab)

dcµemτ + (da+ k)Nδb
,
b

c
,

Nδb

cµemτ
,
δ

p
(R1 − 1)

)
.

3. Stability of the viral free equilibrium E0

In this section, we mainly consider the stability of the viral free equilibrium E0

by employing Liapunov funtion.

Theorem 3.1. If R0 < 1, the viral free equilibrium E0 of system (3) is globally
asymptotical stable for any time delay τ ≥ 0.

Proof. In order to discuss the stability of the viral free equilibrium E0 = ( sd , 0, 0, 0)
for system (3), we define the following Lyapunov function.

V (t) =
e−mτ

2

(
x(t)− s

d

)2

+
se−mτ

d
y(t)+

s

Nd
v(t)+

spe−mτ

dc
z(t)+

sδe−mτ

d

∫ t

t−τ

y(θ)dθ.

Calculating the derivative of V along the solution of system (3), we get

V ′ |(3)=e−mτ
(
x(t)−

s

d

)(
−d

(
x(t)−

s

d

)
− k

(x(t)− s
d
) + s

d

1 + av(t)
v(t)

)
+

se−mτ

d

[
k
(x(t)− s

d
) + s

d

1 + av(t)
v(t)− δy(t)− py(t)z(t)

]
+

sδe−mτ

d
[y(t)− y(t− τ)]
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+
s

Nd

(
Nδe−mτy(t− τ)− µv(t)

)
+

spe−mτ

dc
(cy(t)z(t)− bz(t))

=− e−mτ

(
d+ k

v(t)

1 + av(t)

)(
x(t)−

s

d

)2
+

ks2e−mτ

d2
v(t)

1 + av(t)

−
sµ

Nd
v(t)−

spbe−mτ

dc
z(t)

≤− e−mτ

(
d+ k

v(t)

1 + av(t)

)(
x(t)−

s

d

)2
+

ks2e−mτ

d2
v(t)−

sµ

Nd
v(t)−

spbe−mτ

dc
z(t)

=− e−mτ

(
d+ k

v(t)

1 + av(t)

)(
x(t)−

s

d

)2
−

sµ

Nd
(1−R0)v(t)−

spbe−mτ

dc
z(t).

From Lemma 2.1, x(t) ≥ 0, y(t) ≥ 0, v(t) ≥ 0, z(t) ≥ 0, R0 < 1, we can get

V ′ |(3)≤ 0.

If and only if (x(t), y(t), v(t), z(t)) = ( sd , 0, 0, 0), we obtain V ′ |(3)= 0. Hence,
the viral free equilibrium E0 of system (3) is globally asymptotically stable from
Lyapunov-LaSalle in [13]. The proof is complete. �

4. Stability of equilibrium E1 inactivated by CTLs

In this section, we mainly discuss the stability of the CTL-inactivated infec-
tion equilibrium E1 by analyzing the characteristic equation. First, we linearize
system (3) at E1 to obtain

dx

dt
= (−d− kv1

1 + av1
)x(t)− kx1

(1 + av1)2
v(t),

dy

dt
=

kv1
1 + av1

x(t)− δy(t) +
kx1

(1 + av1)2
v(t)− py1z(t),

dv

dt
= Nδe−mτy(t− τ)− µv(t),

dz

dt
= (cy1 − b)z(t).

(6)

The associated characteristic equation of system (3) at E1 becomes

(λ+b−cy1)
(
(λ+δ)(λ+µ)(λ+d+

kv1
1 + av1

)−Nδe−mτ (λ+d)
kx1

(1 + av1)2
e−λτ) = 0. (7)

It is clear that a root of the equation (7) is

λ1 = cy1 − b =
kscN − dcµemτ − (da+ k)Nδb

Nδ(da+ k)

which has a negative real part by calculating under R1 < 1. We can give the
remaining roots by the solutions of the transcendental equation as follows

(λ+ δ)(λ+ µ)
(
λ+ d+

kv1
1 + av1

)
−Nδe−mτ (λ+ d)

kx1

(1 + av1)2
e−λτ = 0. (8)

Rewrite equation (8) as

λ3 +A2(τ)λ
2 +A1(τ)λ+A0(τ)−

(
B1(τ)λ+B0(τ)

)
e−λτ = 0, (9)



Stability analysis of an HIV pathogenesis model with saturating infection rate 481

where

A2(τ) = δ + µ+ d+
kv1

1 + av1
,

A1(τ) = δµ+ (δ + µ)(d+
kv1

1 + av1
),

A0(τ) = δµ(d+
kv1

1 + av1
),

B1(τ) =
kx1Nδe−mτ

(1 + av1)2
,

B0(τ) =
dkx1Nδe−mτ

(1 + av1)2
.

If τ = 0, equation (9) becomes

λ3 +A2(0)λ
2 +

(
A1(0)−B1(0)

)
λ+

(
A0(0)−B0(0)

)
= 0. (10)

Next, we consider the distribution of all roots of Eq.(10). Noting that R0 > 1
and

A2(0) = δ + µ+ d+
kv1(0)

1 + av1(0)
> 0,

A0(0)−B0(0) =
dδµ2(da+ k)

(
R0(0)− 1

)
k(µ+ asN)

> 0,

A2(0)
(
A1(0)−B1(0)

)
−
(
A0(0)−B0(0)

)
= δ2µ+ δ(δ + µ)

(
d+

kv1(0)

1 + av1(0)

)
+ δµ2 + µ(δ + µ)

(
d+

kv1(0)

1 + av1(0)

)
+ (δ + µ)

(
d+

kv1(0)

1 + av1(0)

)2

−Nδ
kx1(0)

(1 + av1(0))2

(
δ + µ+

kx1(0)

1 + av1(0)

)
.

For

δµ− δN
kx1(0)

(1 + av1(0))2
=

dδµ2a(R0(0)− 1)

k(µ+ sNa)
> 0,

we can get

δ2µ− δNδ
kx1(0)

(1 + av1(0))2
> 0,

δµ2 − µNδ
kx1(0)

(1 + av1(0))2
> 0,

δµ
kv1(0)

1 + av1(0)
− δN

kx1(0)

(1 + av1(0))2
kv1(0)

1 + av1(0)
> 0.

So we can obtain

A2(0)[A1(0)−B1(0)]− [A0(0)−B0(0)] > 0.
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Note that the case R0 > 1 holds and the Routh-Hurwitz criterion in [14] for
cubic polynomials is applicable, we can get that all roots of (10) have negative
real parts for τ = 0.

We know that all roots of (9) continuously depends on τ , which can be verified
in [17]. As τ increases, this steady state will remain stable until one or many roots
cross the imaginary axis. Clearly, if R0 > 1, then λ = 0 is not a solution of (9)
since A0(0) − B0(0) > 0, thus this crossing may occur only at pure imaginary
roots. We consider λ = iω with ω ≥ 0. Then

−ω3i−A2(τ)ω
2 +A1(τ)ωi+A0(τ) = [B1(τ)ωi+B0(τ)]e

−τωi.

Separating the real parts and imaginary parts,we may get{
A0(τ)−A2(τ)ω

2 = B1(τ)ω sin τω +B0(τ) cos τω,

A1(τ)ω − ω3 = B1(τ)ω cos τω −B0(τ) sin τω.

which, together with τ > 0, implies that

N(ω) = ω6 + [A2
2(τ)− 2A1(τ)]ω

4 + [A2
1(τ)− 2A0(τ)A2(τ)

−B2
1(τ)]ω

2 +A2
0(τ)−B2

0(τ)

= 0.

(11)

A straightforward calculation shows that

N ′(ω) = 6ω5 + 4[A2
2(τ)− 2A1(τ)]ω

3 + 2[A2
1(τ)− 2A0(τ)A2(τ)

−B2
1(τ)]ω, ω ∈ (0,+∞).

By computing, we have

δµ−B1(τ) =
dδµ2a(R0 − 1)

k(µ+ sNae−mτ )
> 0,

A0(τ)−B0(τ) =
dδµ2emτ (da+ k)(R0 − 1)

k(µemτ + asN)
> 0.

Further, we get

A2
2(τ)− 2A1(τ) = δ2 + µ2 + (d+

kv1

1 + av1
)2 > 0,

A2
1(τ)− 2A0(τ)A2(τ)−B2

1(τ) = (δµ+B1(τ))(δµ−B1(τ)) + (δ2 + µ2)(d+
kv1

1 + av1
)2 > 0,

A2
0(τ)−B2

0(τ) = [A0(τ) +B0(τ)][A0(τ)−B0(τ)] > 0.

Therefore, N ′(ω) > 0 holds and N(ω) is monotonically increasing function in
ω ∈ (0,+∞), and we have calculated N(0) = A2

0(τ) − B2
0(τ) > 0. So, equation

(11) has no positive solutions, which implies that all roots of (9) has no pure
imaginary roots for τ > 0 under R0 > 1.

Hence, we can summarize the above results and obtain the following theorem.

Theorem 4.1. Let R0 > 1. Then (1) if R1 < 1, equilibrium E1 which is not
activated by CTLs is locally asymptotically stable; (2) if R1 > 1, equilibrium E1

becomes unstable and there appears the other equilibrium E2.
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5. Stability of equilibrium E2 activated by CTLs

In this section, we discuss the stability of the CTL-activated infection equi-
librium E2 by analyzing the characteristic equation. Assume

R1 =
kscN

dcµemτ + (da+ k)Nδb
> 1.

ThenE2 exists and we linearize system (3) at E2(
s(cµemτ+Nδab)

dcµemτ+(da+k)Nδb ,
b
c ,

Nδb
cµemτ ,

δ
p (R1−

1)) is given by

dx

dt
= (−d− kv2

1 + av2
)x(t)− kx2

(1 + av2)2
v(t),

dy

dt
=

kv2
1 + av2

x(t)− (δ + pz2)y(t) +
kx2

(1 + av2)2
v(t)− py2z(t),

dv

dt
= Nδe−mτy(t− τ)− µv(t),

dz

dt
= cz2y(t) + (cy2 − b)z(t).

(12)

At E2, cy2 − b = 0 holds. Let α = d + kx2

1+av2
, β = kx2

(1+av2)2
, γ = δ + pz2 = δR1.

The characteristic equation of system (3) near E2 is given by

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 −
(
b2λ

2 + b1λ
)
e−λτ = 0. (13)

where

a3 = µ+ α+ δR1,

a2 = δR1µ+ α(µ+ δR1) + bδ(R1 − 1),

a1 = δR1αµ+ bδ(R1 − 1)(α+ µ),

a0 = αµbδ(R1 − 1),

b2 = δµR1,

b1 = dδµR1.

By the well-known Routh-Hurwitz criterion in [14], we easily obtain that any
roots of (13) have negative real part for τ = 0. Further, we get equilibrium E2

is also locally asymptotically stable when τ > 0.
Rewrite the equation (13) as

D(λ) = λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 −
(
b2λ

2 + b1λ
)
e−λτ = 0. (14)

The characteristic equation (14) is a fourth-order transcendental equation.
Moreover, D(λ) is defined as characteristic function corresponding to corollary
2.38 in [19]. Therefore, we may introduce corollary 2.38 in [19] to discuss the
stability of equilibrium E2.

Let λ = iω(ω > 0). Then we have

D(iω) = ω4 − a3iω
3 − a2ω

2 + a1iω + a0 −
(
− b2ω

2 + b1iω
)
e−iωτ = 0.
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Let R(ω) and I(ω) is the real parts and imaginary parts of D(iω), respectively.
We obtain

R(ω) = ReD(iω) = ω4 − a2ω
2 + a0 + b2ω

2 cosωτ − b1ω sinωτ,

I(ω) = ImD(iω) = −a3ω
3 + a1ω − b1ω cosωτ − b2ω

2 sinωτ.

For | sinωτ | < ωτ(ω, τ > 0) and | cosωτ | ≤ 1, we have

R(ω) < ω4 − (a2 − b2 − b1τ)ω
2 + a0, ω ∈ (0,+∞),

R(ω) > ω4 − (a2 + b2 + b1τ)ω
2 + a0, ω ∈ (0,+∞),

I(ω) < ω(a1 + b1 − a3ω
2 + b2ω

2τ), ω ∈ (0,+∞),

I(ω) > ω(a1 − b1 − a3ω
2 − b2ω

2τ), ω ∈ (0,+∞).

Let

R+(ω) = ω4 − (a2 − b2 − b1τ)ω
2 + a0,

R−(ω) = ω4 − (a2 + b2 + b1τ)ω
2 + a0,

I+(ω) = ω(a1 + b1 − a3ω
2 + b2ω

2τ),

I−(ω) = ω(a1 − b1 − a3ω
2 − b2ω

2τ).

Then, according to theorem 2.37 in [13], we easily get

R−(ω) < R(ω) < R+(ω), ω ∈ (0,+∞),

I−(ω) < I(ω) < I+(ω), ω ∈ (0,+∞).

In addition, when

τ < τ̄ = min

{
1

µ
,
1

m
ln

kscN − (da+ k)Nδb

dcµ

}
, (15)

we have

a3 − b2τ = µ+ α+ δR1(1− µτ) > 0,

a1 − b1 = δR1µ
kv2

1 + av2
+ bδα(R1 − 1) + bδµ(R1 − 1) > 0.

Therefore, the equation I+(ω) = 0 only has one positive solution η1 =
√

a1+b1
a3−b2τ

;

the equation I−(ω) = 0 also only has one positive η2 =
√

a1−b1
a3+b2τ

. Further, we

have η2 < η1.
When (15) holds, we can still get that

a2 − b2 − b1τ = µd+ δR1d(1− µτ) + δb(R1 − 1) + (µ+ δR1)
kv2

1 + av2
> 0.

(a2 − b2 − b1τ)
2 − 4a0 = [(µ+ δR1)α+ δb(R1 − 1)− dµδR1τ ]

2 − 4µbδ(R1 − 1)α

≥ 2δ[
kv2

1 + av2
+ d(1− τµ)][µR1α+R1bδ(R1 − 1)]

> 0.



Stability analysis of an HIV pathogenesis model with saturating infection rate 485

Thus, the equation R+(ω) = 0 has two real positive roots ζ+1 and ζ+2 satisfying

ζ+1 =

(
(a2 − b2 − b1τ) +

√
(a2 − b2 − b1τ)2 − 4a0
2

) 1
2

and

ζ+2 =

(
(a2 − b2 − b1τ)−

√
(a2 − b2 − b1τ)2 − 4a0
2

) 1
2

.

Clearly, we have ζ+2 < ζ+1 .
Similarly, we can obtain that the equation R−(ω) = 0 has two real positive

roots ζ−1 and ζ−2 satisfying

ζ−1 =

(
(a2 + b2 + b1τ) +

√
(a2 + b2 + b1τ)2 − 4a0
2

) 1
2

and

ζ−2 ) =

(
(a2 + b2 + b1τ)−

√
(a2 + b2 + b1τ)2 − 4a0
2

) 1
2

.

Further, we have ζ−2 < ζ−1 ,
Thus, under (15), both R+(ω) and R−(ω) have two real positive roots, re-

spectively. It is also easy to verify the following:

Q1 = [min(ζ−1 , ζ+1 ),max(ζ−1 , ζ+1 )] = [ζ+1 , ζ−1 ],

Q2 = [min(ζ−2 , ζ+2 ),max(ζ−2 , ζ+2 )] = [ζ−2 , ζ+2 ].

Hence, the intervals Q1 and Q2 are disjoint.
Thus, by summarizing the above result, we know that corollary 2.38 in [19]

is applicable if the following two conditions are satisfied.
(1) R−(0) > 0;
(2) I−(ω) > 0, for ω ∈ Q2.

In fact,

R−(0) = lim
ω→0+

R(ω) = a0 = µbδα(R1 − 1) > 0.

Furthermore, when ω ∈ (0, η2), we have

I−(ω) = ω(a1 − b1 − a3ω
2 − b2ω

2τ) > 0.

Note that Q2 = [ζ−2 , ζ+2 ], therefore, if ζ+2 ≤ η2, then the second condition (2)
holds. In turn, we knows that ζ+2 ≤ η2 is equivalent to

σ(τ) = (a1 − b1)(a3 + b2τ)(a2 − b2 − b1τ)− (a1 − b1)
2 − a0(a3 + b2τ)

2 > 0.

Hence, we have following conclusions according to corollary 2.38 in [19].

Theorem 5.1. When R1 > 1 and the case (15) holds. If σ(τ) > 0, then the
equilibrium E2 is locally asymptotically stable.
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Remark. σ(τ) > 0 is clearly a sufficient but not necessary condition of stability
for the equilibrium E2.

6. Numerical Simulations

In order to illustrate feasibility of the results of Theorem 5.1, we use the
software Matlab to perform numerical simulations.

Example 1. Consider the following system:

dx(t)

dt
= 5− 0.03x(t)− 0.0014453

x(t)v(t)

1 + 0.06v(t)
,

dy(t)

dt
= 0.0014453

x(t)v(t)

1 + 0.06v(t)
− 0.33y(t)− 0.05y(t)z(t),

dv(t)

dt
= 158.4e−0.28τy(t− τ)− 1.8v(t),

dz(t)

dt
= 0.2y(t)z(t)− 0.3z(t).

(16)

For the parameters from (16), we calculate by using the software Matlab

R1 = 4.1717 > 1, τ = 0.4 < min{0.5556, 13.9684}, σ(0.4) = 0.2782 > 0.

Numerical simulations show that the equilibrium E2 is locally asymptotically
stable (See Fig. 1).

Example 2. Consider the following system:

dx(t)

dt
= 5− 0.03x(t)− 0.001

x(t)v(t)

1 + 0.036v(t)
,

dy(t)

dt
= 0.001

x(t)v(t)

1 + 0.036v(t)
− 0.32y(t)− 0.05y(t)z(t),

dv(t)

dt
= 12.8e−0.28τy(t− τ)− 2.8v(t),

dz(t)

dt
= 0.2y(t)z(t)− 0.3z(t).

(17)

For the parameters from (17), we calculate by using the software Matlab

R1 = 1.5531 > 1, τ = 0.2 < min{0.3571, 2.3027}, σ(0.2) = −0.0015 < 0.

Numerical simulations show that σ(τ) > 0 is clearly a sufficient but not necessary
condition of stability for the equilibrium E2; even if σ(τ) < 0, E2 is locally
asymptotically stable (See Fig. 2).

7. Conclusion

In this paper, we have established a mathematical model for HIV with sat-
urating infection rate and time delay by considering the lower activity function
x(t)v(t)
1+av(t) of the virus particles to susceptible cells, and have carried out a compete

analysis on the stability of the the three equilibria of the model.
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Figure 1. Numerical simulations show that the equilibrium E2

is locally asymptotically stable when τ = 0.4 < τ̄ = 0.5556 and
σ(0.4) = 0.2782 > 0.

Our results show that viral free equilibrium E0 of system (3) is globally asymp-
totically stable for any time delay τ ≥ 0 by using the well-known Lyapunov-

LaSalle theorem when the basic reproduction number R0 = ksNe−mτ

dµ

< 1; When R0 > 1 and R1 < 1, E0 becomes unstable and there occurs the sec-
ond biologically meaning equilibrium E1 which is not activated by CTLs, and
the equilibrium E1 is asymptotically stable by carrying out a detailed analysis
on the transcendental characteristic equation of the linearized system (3) at E1;
When R1 > 1, E1 becomes unstable and there occurs internal equilibrium E2

which is activated by CTLs. We have proved and numerically confirmed the
asymptotical stability of E2 satisfying the case σ(τ) > 0 and under additional
conditions (15).

However, for the case σ(τ) < 0 under (15), we are unable to make a conclusion
because numerical simulations have shown the possibility that may still be stable,
which requires us to further study.
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Figure 2. Numerical simulations show that the equilibrium E2

is locally asymptotically stable when τ = 0.2 < τ̄ = 0.3571 and
σ(0.2) = −0.0015 < 0.
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