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OSCILLATION OF HIGHER ORDER STRONGLY

SUPERLINEAR AND STRONGLY SUBLINEAR DIFFERENCE

EQUATIONS†

SAID R. GRACE, ZHENLAI HAN∗ AND XINHUI LI

Abstract. We establish some new criteria for the oscillation of mth order

nonlinear difference equations. We study the case of strongly superlinear
and the case of strongly sublinear equations subject to various conditions.
We also present a sufficient condition for every solution to be asymptotic

at ∞ to a factorial expression (t)(m−1).
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1. Introduction

In what follows, we shall denote N = {0, 1, ...}, N(a) = {a, a + 1, ...} where
a ∈ N and N(a, b) = {a, a+ 1, ..., b}, b ∈ N(a).

Consider the mth order nonlinear difference equation

△mx(t) + f(t, x(t)) = 0, (1)

where △ is the forward difference operator defined by △x(t) = x(t + 1) − x(t),
m is a positive even integer. We shall assume that{

f : N(t0)× R → R is continuous, sgnf(t, x) = sgnx and

f(t, x) ≤ f(t, y) for x ≤ y and t ≥ t0 ∈ N(t0).
(2)

By a solution of equation (1), we mean a nontrivial sequence {x(t)} satisfying
equation (1) for all t ∈ N(t0), where t0 ∈ N. A solution {x(t)} is said to be
oscillatory if it is neither eventually positive nor eventually negative and it is
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nonoscillatory otherwise. An equation is said to be oscillatory if all its solutions
are oscillatory.

Equation (1) (or the function f) is said to be strongly superlinear if there
exists a constant β > 1 such that

|f(t, x)|
|x|β

≤ |f(t, y)|
|y|β

for |x| ≤ |y|, xy > 0, t > t0, (3)

and it is said to be strongly sublinear if there exists a constant γ ∈ (0, 1) such that

|f(t, x)|
|x|γ

≥ |f(t, y)|
|y|γ

for |x| ≤ |y|, xy > 0, t ≥ t0, (4)

(3) holds with β = 1, then equation (1) is called superlinear and (4) holds with
γ = 1 is called sublinear.

The literature on oscillation of solutions of difference equantions is almost
devoted to study of equation (1) when m = 1 and 2 and for recent contribution
we refer to Agarwal et.al. [1, 2, 3]. Only few results are available for the
oscillation of equation (1) when m > 2, see Agarwal et.al.[2, 4, 5].

Therefore, the purpose of this paper is to establish some new results for the
oscillation of strongly superlinear and strongly sublinear difference equations.
We also provide conditions, which guarantee that every solution defined for all
large t ∈ N(t0) is asymptotic at ∞ to (t)(m−1).

The obtained results improve and unify these which have appeared in the
recent literature.

2. Preliminaries

We shall need the following lemmas given in [2].

Lemma 2.1. (Discrete Toylors Formula) Let x(t) be defined on N(t0). Then
for all t ∈ N(t0) and 0 ≤ n ≤ j − 1

∆nx(t) =

j−1∑
i=n

(t− t0)
(i−n)

(i− n)!
∆ix(t0) +

t−j+n∑
l=t0

(t− l − 1)(j−n−1)

(j − n− 1)!
∆jx(l). (5)

Further, for all t ∈ N(t0, z), where z ∈ N(t0) and 0 ≤ n ≤ j − 1

∆nx(t) =

j−1∑
i=n

(−1)i−n (z + i− n− 1− t)(i−n)

(i− n)!
∆ix(z)

− (−1)j−n−1
z−1∑
l=t

(l + j − n− 1− t)(j−n−1)

(j − n− 1)!
∆jx(l).

(6)

Lemma 2.2. (Discrete Kneser’s Theorem) Let x(t) be defined on N(t0), x(t) > 0
and ∆mx(t) be eventually of one sign on N(t0). Then there exists an integer k,
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0 ≤ k ≤ m with m + k odd for ∆mx(t) ≤ 0 and (m + k) even for ∆mx(t) ≥ 0
such that{

k ≤ m− 1 implies (−1)i+k∆ix(t) > 0 for all t ∈ N(t0), k ≤ i ≤ m− 1,

k ≥ 1 implies ∆ix(t) > 0 for all t ∈ N(t0), 1 ≤ i ≤ k − 1.
(7)

Lemma 2.3. Let x(t) be defined on N(t0) and x(t) > 0 with ∆mx(t) ≤ 0 for
t ∈ N(t0) and not identically zero. Then there exists large t1 ∈ N(t0) such that

x(t) ≥ (t− t1)
m−1

(m− 1)!
∆m−1x(2m−k−1t) for t ≥ t1, (8)

where k is as in Lemma 2.2. Furthermore, if x(t) is increasing, then

x(t) ≥ 1

(m− 1)!
(

t

2m−1
)(m−1)∆m−1x(t), t ≥ 2m−1t1. (9)

Lemma 2.4. (Gronwal Inequality) Let for all t ∈ N(t0) the following inequality
be satisfied

x(t) ≤ p(t) + q(t)
t−1∑
l=t0

f(l)x(l), (10)

where {p(t)}, {q(t)}, {f(t)} and {x(t)} are non-negative real-valued sequence de-
fined on N(t0). Then for all t ∈ N(t0),

x(t) ≤ p(t) + q(t)
t−1∑
l=t0

p(l)f(l)
t−1∏

r=l+1

(1 + q(r)f(r)). (11)

3. Oscillation Criteria

We shall study the oscillatory behavior of all solutions of equation (1)
when it is either strongly superlinear or strongly sublinear.

We begin with strongly superlinear case of equation(1).

Theorem 3.1. Suppose that equation (1) is strongly superlinear. If

∞∑
t=t0

∞∑
s=t

(

k−1∏
i=0

(1− t

s− i
))β(s− t)(m−k−1)|f(s, c(s)(k−1))| = ∞, t ≥ t0 (12)

for some c ̸= 0 and k ∈ {1, 3, ...,m− 1}, then equation (1) is oscillatory.

Proof. Let {x(t)} be a non-oscillatory solution of equation (1), say x(t) > 0 for
t ≥ t0 ∈ N(t0). By Lemma 2.2, there exists an integer k ∈ {1, 3, ...,m− 1} such
that (7) holds for t ≥ t1 ≥ t0.

Clearly, ∆k−1x(t) is positive and increasing for t ≥ t1. Thus from (5), we find
for s ≥ t ≥ t0

x(s) =
k−2∑
i=0

(s− t)(i)

i!
∆ix(t) +

s−k+1∑
l=t

(s− l − 1)(k−2)

(k − 2)!
∆k−1x(l)
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≥ (s− t)(k−1)

(k − 1)!
∆k−1x(t), for s ≥ t ≥ t1. (13)

On the other hand, there exists a constant c > 0 such that

x(s) ≥ c(s)(k−1) for s ≥ t1. (14)

From (6) with n = k and j = m, and equation (1), we have

∆kx(t) ≥
∞∑
s=t

(s− t+m− k − 1)(m−k−1)

(m− k − 1)!
f(s, x(s)). (15)

Using the strong superlinearity of f we obtain

∆kx(t) ≥
∞∑
s=t

(s− t+m− k − 1)(m−k−1)

(m− k − 1)!
f(s, c(s)(k−1))(

x(s)

c(s)(k−1)
)β , t ≥ t1. (16)

Using (13) in (16) and the fact that m− 1 ≥ k, we have

∆kx(t) ≥
∞∑
s=t

(s− t)(m−k−1)

(m− k − 1)!
f(s, c(s)(k−1))(

(s− t)(k−1)

c(k − 1)!(s)(k−1)
)β(∆k−1x(t))β

=
∞∑
s=t

(
(s− t)(m−k−1)

(m− k − 1)!

(
1

c(k − 1)!

k−1∏
i=1

(
1−

t

s− i

))β

f(s, c(s)(k−1))(∆k−1x(t))β

for t ≥ t1. Or

∆kx(t)

(∆k−1x(t))β
≥ C

∞∑
s=t

[
k−1∏
i=0

(1− t

s− i
)

]β

(s− t)(m−k−1)f(s, c(s)(k−1)), (17)

where C = ( 1
c(k−1)! )

β 1
(m−k−1)! .

Now, since ∆kx(t) is positive and decreasing for t ≥ t1 + 1, we find

∆kx(t− 1)

(∆k−1x(t))β
≥ C

∞∑
s=t

[
k−1∏
i=0

(1− t

s− i
)

]β

(s− t)(m−k−1)f(s, c(s)(k−1)).

Summing this inequality from t1 + 1 to T ≥ t1 + 1 we get

C
T∑

t=t1+1

[
k−1∏
i=0

(1− t

s− i
)

]β

(s− t)(m−k−1)f
(
s, c(s)(k−1)

)

≤
T∑

t=t1+1

∆kx(t− 1)

(∆k−1x(t))β

≤
∫ x(T+1)

x(t1+1)

u−βdu =
u1−β

1− β
|x(T+1)
u=x(t1+1)

<
1

β − 1
(x(t1 + 1))1−β < ∞ as T → ∞,

which contradicts condition (12). This completes the proof. �
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When k = 1, condition (12) is reduced to

∞∑
t=t0

∞∑
s=t

(1− t

s
)β(s− t)(m−2)|f(s, c)| = ∞. (18)

For the case when m = 2, we obtain

Corollary 3.2. Suppose that equation (1) with m = 2 is strongly superlinear.
If

∞∑
t=t0

∞∑
s=t

|f(s, c)| = ∞, for some constand c ̸= 0, (19)

then equation (1) with m = 2 is oscillatory.

For strongly sublinear equation (1), we have

Theorem 3.3. Let equation (1) be strongly sublinear. If

∞∑
s=t0

|f(s, c(s)(m−1))| = ∞, (20)

for some constant c ̸= 0, then equation (1) is oscillatory.

Proof. Let {x(t)} be a non-oscillatory solution of equation (1), say x(t) > 0 for
t ∈ N(t0). By Lemma 2.2, these exists a t1 ≥ t0 and constants c1 and c2 such
that

∆m−1x(t) > 0 and ∆x(t) > 0 for t ≥ t1, (21)

x(t) ≤ c1(t)
(m−1) for t ≥ t1, (22)

and by Lemma 2.3, we find

x(t) ≥ c2(t)
(m−1)∆m−1x(t), for t ≥ t2 = 2m−1t1. (23)

Summing equation (1) from t ≥ t2 to u ≥ t and letting u → ∞, we get

∆m−1x(t) ≥
∞∑
s=t

f(s, x(s)).

Using the strong sublinearity of f in the above inequality, we obtain

∆m−1x(t) ≥
∞∑
s=t

f(s, c1(s)
(m−1))

(
x(s)

c1(s)(m−1)

)γ

, for t ≥ t2. (24)

By applying (23) in the (24), we find

x(t)

(t)(m−1)
≥ c2∆

m−1x(t) ≥ c2
cγ1

∞∑
s=t

f(s, c1(s)
(m−1))(

x(s)

(s)(m−1)
)γ . (25)

Denoting the right-hand side of (25) by z(t), we find

−∆z(t) =
c2
cγ1

f(t, c1(t)
(m−1))(

x(t)

(t)(m−1)
)γ
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≥ c2
cγ1

f(t, c1(t)
(m−1))zγ(t) for t ≥ t2,

or
c2
cγ1

f(t, c1(t)
(m−1)) ≤ −z−γ(t)∆z(t) for t ≥ t2.

Summing this inequality from t2 + 1 to T ≥ t2 + 1, we get

c2
cγ1

T∑
t=t2+k

f(t, c1(t)
(m−1)) ≤ −

T∑
t=t2+k

z−γ(t)∆z(t)

≤
∫ x(t2+1)

0

z−γ(t)dz(t) =
z1−γ(t2)

1− γ
< ∞ as T → ∞,

which contradicts condition (20). This completes the proof. �
Remark 3.1. One can easily see that equation (1) is oscillatory if

∞∑
t=t0

|f(s, c)(m−1)| = ∞, (26)

for some constants c ̸= 0.

Remark 3.2. The results of this section are presented in a form which is essen-
tially new. It extend and improve many of the existing results appeared in the
literature, see [1, 2, 3, 4, 5].

Remark 3.3. When m = 2, the results obtained include many of the known
oscillation results for related second order nonlinear difference equations, see
[1, 2, 3].

Remark 3.4. The results of this section can be extended tomth order nonlinear
difference equation with deviating arguments of the form

∆mx(t) + f(t, x(g(t))) = 0, (27)

where f is as in equation (1) and g ∈ G{g : N(t∗) → N for some t∗ ∈ N : g(t) ≤
t, limt→∞ g(t) = 0}, {g(t)} is a nondecreasing sequence.

In fact, we may replace s in conditions (12) and (20) by g(s). The details are
left to the reader.

4. Asymptotic Behavior

In this section we give a sufficient condition for every solution x defined for
all large t ∈ N(t0) of equation (1) to satisfy

∆m−1x(t) → c for t → ∞ and so
x(t)

(t)(m−1)
→ c

(m− 1)!
for t → ∞,

where c is some real number (depending on solution {x(t)}.
We assume that

|f(t, x)| ≤ a(t) + b(t)|x|γ for all (t, x) ∈ N(t0)× R, (28)

where γ ∈ (0, 1], {a(t)} and {b(t)} are nonnegative real-valued sequences.
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Theorem 4.1. If
∞∑

s=t0

a(s) < ∞ and
∞∑

s=t0

((s)(m−1))γb(s) < ∞, (29)

then every solution {x(t)}, t ∈ N(t0) of equation (1) satisfies

∆m−1x(t) = c+ o(1), for t → ∞, (30)

and

x(t) =
c

(m− 1)!
(t)(m−1) + o((t)(m−1)) for t → ∞, (31)

where c is some constant (depending on solution {x(t)}.

Proof. Let {x(t)} be a solution for t ≥ t0 ∈ N(t0) of equation (1). Then (1)
gives

x(t) =
m−1∑
1=0

(t− t0)
(i)

i!
∆ix(t0) +

t−m∑
s=t0

(t− s− 1)(m−1)

(m− 1)!
(−f(s, x(s))) for t ≥ t0.

Thus, by (29), we obtain for t ≥ t0,

|x(t)| ≤
m−1∑
1=0

(t− t0)
(i)

i!
|∆ix(t0)|+

t−m∑
s=t0

(t− s− 1)(m−1)

(m− 1)!
[a(s) + b(s)|xγ(s)|]

≤
m−1∑
i=0

(t)(i)

i!
|∆ix(t0)|+

(t)(m−1)

(m− 1)!

t−m∑
s=t0

a(s)

+
(t)(m−1)

(m− 1)!

t−m∑
s=t0

b(s)((s)(m−1))γ(
x(s)

(s)(m−1)
)γ ,

or

|x(t)|
(t)(m−1)

≤
m−1∑
i=0

1

i!

(t)(i)

(t)(m−1)
|∆ix(t0)|+

1

(m− 1)!

t−m∑
s=t0

a(s)

+
1

(m− 1)!

t−m∑
s=t0

((s)(m−1))γb(s)(
x(s)

(s)(m−1)
)γ .

Using the elementary inequality

|x|γ ≤ 1 + |x|, for x ∈ R and γ ∈ [0, 1],

we find

|x(t)|
(t)(m−1)

≤
m−1∑
i=0

1

i!

(t)(i)

(t)(m−1)
|∆ix(t0)|+

1

(m− 1)!

t−m∑
s=t0

[a(s) + ((s)(m−1))γb(s)]

+
1

(m− 1)!

t−m∑
s=t0

((s)(m−1))γb(s)(
|x(s)|

(s)(m−1)
).
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By the assumption (29), these exists constat C > 0 such that

|x(t)|
(t)(m−1)

≤ C +

t−m∑
s=t0

1

(m− 1)!

(
(s)(m−1)

)γ
b(s)

(
|x(s)|

(s)(m−1)

)
.

Applying Lemma 2.4 and using condition (29) we can conclude that there exists
a positive constant M such that

|x(t)|
(t)(m−1)

≤ M for t ≥ t0 ∈ N(t0). (32)

Now, by using (28) and (32), we derive

|f(t, x(t))| ≤ a(t) + b(t)|x(t)|γ

= a(t) + b(t)
(
(t)(m−1)

)γ ( |x(t)|
(t)(m−1)

)γ

≤ a(t) +Mγb(t)
(
(t)(m−1)

)γ
for t ≥ t0.

Thus, because of (29), it follows that
∞∑

s=t0

f(s, x(s)) exists (as a real number) .

But, (1) gives

∆m−1x(t) = ∆m−1x(t0) +
t−1∑
s=t0

f(s, x(s)).

Therefore,

lim
t→∞

∆m−1x(t) = ∆m−1x(t0) +

∞∑
s=t0

f(s, x(s)) := C ∈ R,

i.e. (30) holds. Finally, by L’Hospital rule, we obtain

lim
t→∞

x(t)

(t)(m−1)
=

1

(m− 1)!
lim
t→∞

∆m−1x(t) =
c

(m− 1)!
,

and consequently the solution {x(t)} satisfies (31). This completes the proof. �

Of course, Theorem 4.1 remains valid for the equations of the form

∆mx(t) = ±f(t, x(t)), (33)

where f satisfies conditions (28) and (29).
We may note that the second part of the condition (29) can be replaced by

∞∑
s(m−1)γb(s) < ∞, (34)

and also the conclusion (31) can be replace by

x(t) =
ct(m−1)

(m− 1)!
+ o(t(m−1)) for t → ∞. (35)
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As illustrative example, we consider the equation

∆4x(t) = p(t) + q(t)|x(t)|γsgnx(t), (36)

where the {p(t)} and {q(t)} are non negative real sequence and γ ∈ (0, 1] is a
constant. Now, if

∞∑
p(s) < ∞ and

∞∑
s(3)γq(s) < ∞,

then by Theorem 4.1, we conclude that every solution of equation (36) satisfies

∆3x(t) = C + o(1) for t → ∞ and x(t) =
C

3!
t(3) + o((t)(3)) for t → ∞,

where C is some real number depending on the solution {x(t)}.

5. General Remarks

1. We many note that conditions (12) and (18) can be replaced by the stronger
condition

∞∑
t=t0

s(m−1)|f(s, c)| = ∞ for some constant c ̸= 0, (37)

while condition (20) takes the form

∞∑
t=t0

|f(s, c(s)(m−1))| = ∞ for some constant c ̸= 0. (38)

2. Theorem 4.1 when m = 2 is a discrete analog of the results in [6, 7, 8, 9].
Moreover, it improve and unify some of them.

6. Example

Consider the following mth order nonlinear difference equation

∆mx(t) + x(t)
1
3 = 0. (39)

Let m > 4 is a positive even integer, f(t, x(t)) = x(t)
1
3 , when |x| ≤ |y|, γ = 1

2 ,
we have

|f(t, x)|
|x| 12

≥ |f(t, y)|
|y| 12

,

so f(t, x(t)) is strong sublinear.
Since c ̸= 0,

f(s, c(s)(m−1)) = c
1
3 ((s)(m−1)) = c

1
3

(
s(s− 1)(s− 2)...(s−m+ 2)

) 1
3 .

Then,

∞∑
s=t0

|f(s, c(s)(m−1))| =
∞∑

s=t0

|c 1
3 (s(s− 1)(s− 2)...(s−m+ 2))

1
3 |. (40)
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Because m > 4 is a positive even integer, so 1
3 (m− 1) > 1, let t0 = m− 2, so

(s(s− 1)(s− 2)...(s−m+ 2))
1
3 > 0,

and lim
s→∞

(s(s − 1)(s − 2)...(s − m + 2))
1
3 = +∞, then (40) is divergence, so

∞∑
s=t0

|f(s, c(s)(m−1))| = ∞. By Theorem 3.3, the solution of function (39) is

oscillatory.
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