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VARIOUS TYPES OF WELL-POSEDNESS FOR MIXED

VECTOR QUASIVARIATIONAL-LIKE INEQUALITY

USING BIFUNCTIONS
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Abstract. In this paper, we investigate the α-well-posedness and α-L-
well-posedness for a mixed vector quasivariational-like inequality using
bifunctions. Some characterizations are derived for the above mentioned

well-posedness concepts. The concepts of α-well-posedness and α-L-well-
posedness in the generalized sense are also given and similar characteriza-
tions are derived.
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1. Introduction

The notion of well-posedness is significant as it plays a crucial role in the
stability theory for optimization problems and has been studied in different
areas of optimization such as mathematical programming, calculus of variations
and optimal control. Such a study becomes important for problems wherein,
we may not be able to find the exact solution of the problem. Under these
circumstances, the well-posedness of an optimization problem is pivotal in the
sense that it ensures the convergence of the sequence of approximate solutions
obtained through iterative techniques to the exact solution of the problem.

Well-posedness of a minimization problem was first considered by Tykhonov
[23] according to which every minimizing sequence converges towards the unique
minimum solution. Practically, a problem may have more than one solution.
Hence, the notion of well-posedness in the generalized sense was introduced. The
nonemptiness of the set of minimizers and the convergence of subsequence of the
minimizing sequence towards a member of this set guarantees well-posedness
in the generalized sense. Zolezzi [26, 27] introduced and studied the extended
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well-posedness for an optimization problem by embedding the original problem
into a parametric optimization problem. For further details, one may refer to
the text by Lucchetti [17].

Variational inequality provides suitable mathematical models for a wide range
of practical problems and have been intensively studied in [7, 14]. Since, a mini-
mization problem is closely related to a variational inequality, hence it is impor-
tant to study the well-posedness of variational inequality. Lucchetti and Patrone
[15] introduced the notion of well-posedness for a variational inequality by means
of Ekeland’s Variational Principle. Lignola and Morgan [16] introduced paramet-
ric well-posedness for variational inequalities whereas in [18], Lignola introduced
the notions of well-posedness and L-well-posedness for quasivariational inequal-
ities and derived some metric characterizations. The corresponding results of
Lignola and Morgan [16] were extended to the vector case by Fang and Huang
[8]. Prete et al. [21] introduced the concept of α-well-posedness for the classical
variational inequality. Fang, Huang and Yao [10] introduced the notion of well-
posedness for a mixed variational inequality and studied its relationship with
the well-posedness of corresponding inclusion and fixed point problems which
was further generalized by Ceng and Yao [2] for generalized mixed variational
inequality. Parametric variational inequalities are problems where a parameter
is allowed to vary in a certain subset of a metric space. It has been shown that
the parametric variational inequality is a central ingredient in the class of Math-
ematical Programs with Equilibrium Constraints which appear in many applied
contexts and have been studied by many authors [16, 21].

A quasivariational inequality is an extension of the classical variational in-
equality in which the defining set of the problem varies with a variable. The
interest in quasivariational inequalities lies in the fact that many economic
or engineering problems are modeled through them. Very recently, Ceng et
al. [3] studied the concepts of well-posedness and L-well-posedness for mixed
quasivariational-like inequality problems (MQVLI). Fang and Hu [9] and Hu,
Fang and Huang [12] studied well-posedness for parametric variational inequal-
ity and quasivariational inequality respectively using bifunctions.

Motivated by the above mentioned research work,in this paper, we generalize
the concepts of α-well-posedness and α-L-well-posedness for parametric mixed
vector quasivariational-like inequality (MVQVLIp) having a unique solution and
in the generalized sense if (MVQVLIp) has more than one solution. Necessary
and sufficient conditions for α-well-posedness and α-L-well-posedness are formu-
lated in terms of the diameters of the approximate solution sets. In a similar
way, α-well-posedness and α-L-well-posedness in the generalized sense is shown
to be equivalent to a condition involving a regular measure of non compactness
of the approximate solution sets.

The paper is organized as follows: In Section 2, necessary notations, definitions
and lemmas have been recalled. Section 3 establishes necessary and sufficient
conditions for α-well-posedness and α-L-well-posedness for (MVQVLIp) using
bifunctions, while in Section 4, necessary and sufficient conditions are obtained
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for α-well-posedness and α-L-well-posedness in the generalized sense. Finally in
Section 5, α-well-posedness and α-L-well-posedness of (MVQVLIp) are shown to
be equivalent to the existence and uniqueness of their respective solutions.

2. Preliminaries

Throughout this paper, we suppose that α ≥ 0, K is a nonempty closed subset
of a real Banach space X. Let η : K×K → X be a map. Let P be a parametric
norm space, S : P ×K → 2K be a set-valued map. Let Y be a real Banach space
endowed with a partial order induced by a pointed, closed and convex cone C
with intC nonempty;

x ≥C y ⇔ x− y ∈ C, x ≥intC y ⇔ x− y ∈ intC,

x �C y ⇔ x− y /∈ C, x �intC y ⇔ x− y /∈ intC.

Let h : P ×K ×X → Y be a function. Let ϕ : K ×K → Y be a bifunction. We
consider the following parametric mixed vector quasivariational-like inequality
using bifunctions;

MVQVLIp(h, S) Find x ∈ K such that x ∈ S(p, x),

h(p, x, η(x, y)) + ϕ(x, y) �intC 0, ∀ y ∈ S(p, x).

It is observed that MVQVLIp(h, S) provides very general formulations of varia-
tional inequalities which include the classical Stampacchia variational inequality
as a special case (see [14]), mixed quasivariational-like inequalities (see [3]),
variational inequalities defined using bifunctions (see [9]), parametric quasivari-
ational inequality (see [19]) and parametric quasivariational inequality defined
using bifunctions (see [12]).

In particular, we observe that, if ϕ(x, y) = ϕ(x) − ϕ(y) and Y = R̄, then
MVQVLIp(h, S) reduces to mixed quasivariational-like inequality studied in [3].

If ϕ(x, y) = 0, η(x, y) = x − y, ∀ x, y ∈ K and Y = R̄, then MVQVLIp(h, S)
reduces to the parametric Stampacchia quasivariational inequality using bifunc-
tions SQVIp(h, S) which has been dealt in [12]. If further, S(p, x) = K, ∀ x ∈ K,
then it reduces to the parametric Stampacchia variational inequality using bi-
functions studied in [9]. The solution set of MVQVLIp(h, S) is denoted by Tp.
In the sequel, we introduce some notions of well-posedness for MVQVLIp(h, S).

Definition 2.1. Let α ≥ 0. Let p ∈ P and {pn} ⊂ P be a sequence converging to
p. A sequence {xn} ⊂ X is said to be an α-approximating sequence [respec-
tively an α-L-approximating sequence] for MVQVLIp(h, S) corresponding to
{pn} if and only if:

(i) xn ∈ K, ∀ n ∈ N.
(ii) there exists a sequence of positive numbers {ϵn} with ϵn ↓ 0 such that:

d(xn, S(pn, xn)) ≤ ϵn, h(pn, xn, η(xn, y)) + ϕ(xn, y) �intC

(
α

2
∥xn − y∥2 + ϵn

)
e,

y ∈ S(pn, xn), ∀ n ∈ N,
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[respectively if:

(i) xn ∈ K, ∀ n ∈ N.
(ii) there exists a sequence of positive numbers {ϵn} with ϵn ↓ 0 such that:

d(xn, S(pn, xn)) ≤ ϵn;h(pn, y, η(xn, y)) + ϕ(xn, y) �intC

(
α

2
∥xn − y∥2 + ϵn

)
e,

y ∈ S(pn, xn), ∀ n ∈ N, ]

where e is any fixed point in intC.

Remark 2.2. Definition 2.1 generalizes Definition 2.3 of Lignola [18], Definition
2.2 of Ceng et al. [3] and Definition 1 of Hu et al. [12].

Definition 2.3. The family {MVQVLIp(h, S) : p ∈ P} is said to be α-well-
posed [respectively α-L-well-posed] if ∀ p ∈ P , MVQVLIp(h, S) has a unique
solution xp and for all sequences {pn} → p, every α-approximating sequence
[respectively α-L-approximating sequence] corresponding to {pn} converges to
xp.

Remark 2.4. Definition 2.3 generalizes Definition 2.4 of [18], Definition 2.3 of
[3] and Definition 2 of [12].

Definition 2.5. The family {MVQVLIp(h, S) : p ∈ P} is said to be α-well-
posed in the generalized sense [respectively α-L-well-posed in the gen-
eralized sense] if ∀ p ∈ P , MVQVLIp(h, S) has a nonempty solution set and
for all sequences {pn} → p, every α-approximating sequence [respectively α-L-
approximating sequence] corresponding to {pn} has a subsequence which con-
verges to some point of the solution set.

In order to characterize the well-posedness of the quasivariational inequality,
Lignola [18] defined some concepts of approximate solutions for quasivariational
inequalities. Motivated by these concepts, for every α ≥ 0, ϵ ≥ 0, δ ≥ 0, we
consider the following α-approximate and α-L-approximate solution sets;

Qp(δ, ϵ) =
∪

p̄∈B(p,δ)

{
x ∈ K : d(x, S(p̄, x)) ≤ ϵ and

h(p̄, x, η(x, y)) + ϕ(x, y) �intC

(
α

2
∥x− y∥2 + ϵ

)
e, ∀ y ∈ K

}
.

Lp(δ, ϵ) =
∪

p̄∈B(p,δ)

{
x ∈ K : d(x, S(p̄, x)) ≤ ϵ and

h(p̄, y, η(x, y)) + ϕ(x, y) �intC

(
α

2
∥x− y∥2 + ϵ

)
e, ∀ y ∈ K

}
.

To investigate the α-well-posedness and α-L-well-posedness of
MVQVLIp(h, S), we need the following concepts and results.
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Definition 2.6 ([13]). Let H be a non empty subset of X. The measure of
noncompactness µ of the set H is defined by

µ(H) = inf

{
ϵ > 0 : H ⊆

n∪
i=1

Hi, diamHi < ϵ, i = 1, 2, . . . , n

}
,

where diamHi = sup{d(a1, a2) : a1, a2 ∈ Hi}.

Definition 2.7 ([13]). TheHausdorff Distance between two nonempty bounded
subsets A and B of a metric space (X, d) is

H(A,B) = max{e(A,B), e(B,A)},
where e(A,B) = sup

a∈A
d(a,B) = sup

a∈A
infb∈B d(a, b).

Definition 2.8 ([3, 8]). Let h : P × K × X → Y be a function and let ϕ :
K×K → Y be a bifunction. Let η : K×K → X be a map. Then h is said to be

(i)C-η-monotone if for any x, y ∈ K,

h(p, x, η(x, y))− h(p, y, η(x, y)) ≥intC 0.

(ii)C-η-pseudomonotone with respect to ϕ if for any x, y ∈ K,

h(p, x, η(x, y)) + ϕ(x, y) �intC 0

⇒ h(p, y, η(x, y)) + ϕ(x, y) �intC 0.

Definition 2.9 ([13]). Let (E, τ) and (F, σ) be two 1st countable topological
spaces. A set valued map G : E → 2F is said to be,

(i) (τ, σ)-closed if for all x ∈ E, for all sequences {xn} τ -converging to x and
for all sequences {yn} σ-converging to y such that yn ∈ G(xn), ∀ n ∈ N,
one has y ∈ G(x), that is, G(x) ⊃ lim supn G(xn).

(ii) (τ, σ)-lower semicontinuous if for all x ∈ E, for all sequences {xn} τ -
converging to x and for all y ∈ G(x), there exists a sequence {yn} σ-
converging to y such that yn ∈ G(xn) for sufficiently large n, that is,
G(x) ⊂ lim infn G(xn).

(iii) (τ, σ)-subcontinuous if for all x ∈ E, for all sequences {xn} τ -converging
to x and for all sequences {yn} with yn ∈ G(xn), yn has a σ-convergent
subsequence.

Definition 2.10. A function g : X → R is said to be positively homogeneous
if g(λx) = λg(x), ∀ x ∈ X, ∀ λ > 0.

Lemma 2.11. Let K be convex and x ∈ K be a given point. Let h : P×K×X →
Y be a positively homogeneous function in 3rd variable, y 7→ h(p, x, η(x, y)) be
concave and η(x, x) = 0, ϕ be a bifunction with ϕ(x, x) = 0 for fixed x and
y 7→ ϕ(x, y) concave. Then,

h(p, x, η(x, y)) + ϕ(x, y) �intC 0, ∀ y ∈ K

⇔ h(p, x, η(x, y)) + ϕ(x, y) �intC
α

2
∥x− y∥2e, ∀ y ∈ K.
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Proof. Obviously, necessary condition holds true.
For sufficient condition, let h(p, x, η(x, y))+ϕ(x, y) �intC

α
2 ∥x−y∥2e, ∀ y ∈ K.

For any v ∈ K, let y(t) = x+ t(v − x) ∈ K, ∀ t ∈ [0, 1] with y(t) ̸= x. Hence,

h(p, x, η(x, y(t))) + ϕ(x, y(t)) �intC
α

2
∥x− y(t)∥2e.

Now, y 7→ h(p, x, η(x, y)) is concave and η(x, x) = 0. So, h(p, x, η(x, y(t))) ≥
h(p, x, tη(x, v)). Since, h is positively homogeneous in the 3rd variable, we ob-
tain,

h(p, x, η(x, y(t))) + ϕ(x, y(t)) ≥ th(p, x, η(x, v)) + ϕ(x, y(t)).

As ϕ(x, .) is concave and ϕ(x, x) = 0, we get that

ϕ(x, y(t)) = ϕ(x, x+ t(v − x)) = tϕ(x, v).

Therefore, using the fact that t ∈ [0, 1], we have,

h(p, x, η(x, y(t))) + ϕ(x, y(t)) ≥ th(p, x, η(x, v)) + tϕ(x, v).

Thus, th(p, x, η(x, v)) + tϕ(x, v) �intC
α
2 t

2∥x− v∥2e.
Dividing by t > 0 and taking limit as t → 0, we get the required sufficient

condition. �

Remark 2.12. Lemma 2.11 is a generalization of Lemma 2 of [12].

3. Mixed Vector Quasivariational-like Inequality
Having a Unique Solution

In this section, we give some metric characterizations of α-well-posedness and
α-L-well-posedness for MVQVLIp(h, S).

Theorem 3.1. Let K be a closed and convex subset of a real Banach space
X. Let ϕ : K × K → Y be a continuous bifunction with ϕ(x, x) = 0 for fixed
x and ϕ(x, .) concave. Let η : K × K → X be a continuous mapping with
y 7→ h(p, x, η(x, y)) concave and η(x, x) = 0. Let S : P×K → 2K be a nonempty
set-valued map which is convex valued, (s, w)-closed, (s, w)-subcontinuous and
(s, s)-lower semicontinuous. Let h : P ×K ×X → Y be a continuous function
which is positively homogeneous in the 3rd variable. Then, MVQV LIp is α-
well-posed if and only if, ∀ p ∈ P ,

Qp(δ, ϵ) ̸= ∅, ∀ δ, ϵ > 0 and diamQp(δ, ϵ) → 0 as (δ, ϵ) → (0, 0). (3.1)

Proof. Let MVQVLIp be α-well-posed. Then, Tp ̸= ∅ and Tp ⊂ Qp(δ, ϵ). Thus,
Qp(δ, ϵ) ̸= ∅, ∀ δ, ϵ > 0. Assume on the contrary, diamQp(δ, ϵ) 9 0 as (δ, ϵ) →
(0, 0). Then, there exist sequences {ϵn}, {δn}, {un}, {vn} with ϵn → 0, δn → 0,
un, vn ∈ Qp(δn, ϵn) and a positive number l such that

∥un − vn∥ > l, ∀ n . (3.2)
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As un, vn ∈ Qp(δn, ϵn), there exist pn, p̄n ∈ B(p, δn) such that

d(un, S(pn, un)) ≤ ϵn and h(pn, un, η(un, y)) + ϕ(un, y) �intC

(
α

2
∥un − y∥2 + ϵn

)
e,

∀ y ∈ K, ∀ n ∈ N

d(vn, S(p̄n, vn)) ≤ ϵn andh(p̄n, vn, η(vn, y)) + ϕ(vn, y) �intC

(
α

2
∥vn − y∥2 + ϵn

)
e,

∀ y ∈ K, ∀ n ∈ N.

Thus, {un} and {vn} are α-approximating sequences for MVQVLIp correspond-
ing to {pn} and {p̄n} respectively. As MVQVLIp is α-well-posed, both the α-
approximating sequences converge to the unique solution of MVQVLIp , which
is a contradiction to (3.2).

Conversely, suppose ∀ p ∈ P , (3.1) holds. We will first show that MVQVLIp
cannot have more than one solution. Assume z1 and z2 are its solutions with
z1 ̸= z2. Then, z1, z2 ∈ Qp(δ, ϵ), ∀ δ, ϵ ≥ 0. Taking (3.1) into account, we get
z1 = z2, which is a contradiction.

Now, let {pn} → p ∈ P and {xn} be an α-approximating sequence for
MVQVLIp. Then, there exists sequence {ϵn} with ϵn ↓ 0 such that xn ∈ K,

d(xn, S(pn, xn)) ≤ ϵn andh(pn, xn, η(xn, y)) + ϕ(xn, y) �intC

(
α

2
∥xn − y∥2 + ϵn

)
e,

∀ y ∈ S(pn, xn), ∀ n ∈ N.

Take δn = ∥pn − p∥ then xn ∈ Qp(δn, ϵn). By the given condition, {xn} is a
Cauchy sequence and it strongly converges to a point say x0 ∈ K. We will now
prove that x0 is the unique solution of MVQVLIp by two steps.

(i) We show that x0 ∈ S(p, x0). Since, d(xn, S(pn, xn)) ≤ ϵn < ϵn + 1
n .

Therefore, there exists yn ∈ S(pn, xn) such that

∥xn − yn∥ < ϵn +
1

n
.

As, S is (s, w)-subcontinuous and (s, w)-closed, the sequence {yn} has a
subsequence {ynk

} weakly converging to y ∈ S(p, x0). Hence,

d(x0, S(p, x0)) ≤ ∥x0 − y∥ ≤ lim inf ∥xnk
− ynk

∥ ≤ lim

(
ϵnk

+
1

k

)
= 0.

Thus, x0 ∈ S(p, x0).
(ii) Let z ∈ S(p, x0) be an arbitrary element. Since, S is (s, s)-lower semicon-

tinuous, there exists zn ∈ S(pn, xn) : zn → z. Thus, there exists sequence
{ϵn} ↓ 0 such that

h(pn, xn, η(xn, zn)) + ϕ(xn, zn) �intC

(
α

2
∥xn − zn∥2 + ϵn

)
e.

h, η and ϕ being continuous, we get

h(p, x0, η(x0, z)) + ϕ(x0, z) �intC
α

2
∥x0 − z∥2e.
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Thus, by Lemma 2.11, we have

h(p, x0, η(x0, z)) + ϕ(x0, z) �intC 0, ∀ z ∈ S(p, x0),

which shows that x0 is a solution of MVQVLIp.

Hence, MVQVLIp is α-well-posed. �

Theorem 3.2. Let S : P ×K → 2K be convex valued. Then MVQV LIp is α-
well-posed if and only if its solution set Tp ̸= ∅, ∀ p ∈ P and diamQp(δ, ϵ) → 0
as (δ, ϵ) → (0, 0).

Proof. The necessary condition has been proved in Theorem 3.1.
For sufficiency, let {pn} be a sequence such that pn → p ∈ P and {xn} be an

α-approximating sequence for MVQVLIp corresponding to {pn}. Then, there
exists sequence {ϵn} with ϵn ↓ 0 such that

d(xn, S(pn, xn)) ≤ ϵn and h(pn, xn, η(xn, y)) + ϕ(xn, y) �intC

(
α

2
∥xn − y∥2 + ϵn

)
e,

∀ y ∈ S(pn, xn), ∀n ∈ N.

Thus, xn ∈ Qp(δn, ϵn) with δn = ∥pn − p∥. Let x0 be the unique solution of
MVQVLIp. Then, x0 ∈ Qp(δn, ϵn) ∀ n. Thus, ∥xn−x0∥ ≤ diamQp(δn, ϵn) → 0,
that is, xn → x0 and hence, MVQVLIp is α-well-posed. �

We now have analogous results for α-L-well-posedness.

Theorem 3.3. Suppose that the hypothesis of Theorem 3.1 hold and let h be
C-η-pseudomonotone with respect to ϕ. Then MVQV LIp is α-L-well-posed if
and only if Lp(δ, ϵ) ̸= ∅, ∀ δ, ϵ > 0 and diamLp(δ, ϵ) → 0 as (δ, ϵ) → (0, 0).

Proof. Let MVQVLIp be α-L-well-posed. As h is C-η-pseudomonotone with re-
spect to ϕ, Lp(δ, ϵ) ̸= ∅. On the same lines of Theorem 3.1, we get diamLp(δ, ϵ) →
0 as (δ, ϵ) → (0, 0).

Conversely, let the given condition hold. As h is C-η-pseudomonotone with
respect to ϕ, every solution of MVQVLIp belongs to Lp(δ, ϵ), ∀ δ, ϵ > 0 which
would also be unique. Also, an α-L-approximating sequence exists. Let {xn}
be an α-L-approximating sequence which converges to x0, as in Theorem 3.1.
x0 would then be the solution of MVQVLIp. Thus, MVQVLIp is α-L-well-
posed. �
Theorem 3.4. Let S : P×K → 2K be convex valued and h be C-η-pseudomonotone
with respect to ϕ. Then, MVQV LIp is α-L-well-posed if and only if its solution
set Tp ̸= ∅ and diamLp(δ, ϵ) → 0 as (δ, ϵ) → (0, 0).

Proof. The necessary condition holds as in Theorem 3.3.
For sufficient condition, let {pn} be a sequence converging to p ∈ P and {xn}

be an α-L-approximating sequence for MVQVLIp corresponding to {pn}. Then,
there exists sequence {ϵn} with ϵn ↓ 0 such that,

d(xn, S(pn, xn)) ≤ ϵn andh(pn, y, η(xn, y)) + ϕ(xn, y) �intC

(
α

2
∥xn − y∥2 + ϵn

)
e,
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∀ y∈S(pn, xn), ∀ n∈N.

Thus, xn ∈ Lp(δn, ϵn) with δn = ∥pn − p∥. Let x0 be the unique solution of
MVQVLIp. Then, x0 ∈ Lp(δn, ϵn), ∀ n. Thus, ∥xn−x0∥ ≤ diamLp(δn, ϵn) → 0,
that is, xn → x0 and the problem is α-L-well-posed. �

4. Mixed Vector Quasivariational-like Inequality
having more than One Solution

In this section, we give some metric characterizations of α-well-posedness and
α-L-well-posedness in the generalized sense for MVQVLIp(h, S).

Theorem 4.1. Let all the assumptions of Theorem 3.1 be true and let P be
finite dimensional. Then, MVQV LIp is α-well-posed in the generalized sense if
and only if, ∀ p ∈ P ,

Qp(δ, ϵ) ̸= ∅ ∀ δ, ϵ > 0 and lim
δ→0,ϵ→0

µ(Qp(δ, ϵ)) = 0.

Proof. Let MVQVLIp be α-well-posed in the generalized sense. Then, Tp ̸= ∅
and Tp ⊂ Qp(δ, ϵ). Thus, Qp(δ, ϵ) ̸= ∅ ∀ δ, ϵ > 0. Also, Tp is compact as when
{xn} is any sequence in Tp, then {xn} would be an α-approximating sequence for
MVQVLIp which is α-well-posed in the generalized sense, therefore {xn} would
have a subsequence converging strongly to some point of Tp. Now,

H(Qp(δ, ϵ), Tp) = max{e(Qp(δ, ϵ), Tp), e(Tp,Qp(δ, ϵ))} = e(Qp(δ, ϵ), Tp).

Also, µ(Qp(δ, ϵ)) ≤ 2H(Qp(δ, ϵ), Tp) + µ(Tp) = 2e(Qp(δ, ϵ), Tp). It is now suffi-
cient to show that e(Qp(δ, ϵ), Tp) → 0 as (δ, ϵ) → (0, 0). If e(Qp(δ, ϵ), Tp) 9 0 as
(δ, ϵ) → (0, 0), there exists τ > 0 and sequences {δn}, {ϵn} with δn ↓ 0, ϵn ↓ 0,
xn ∈ K with xn ∈ Qp(δn, ϵn) such that

xn /∈ Tp +B(0, τ). (4.1)

Since, xn ∈ Qp(δn, ϵn), {xn} is an α-approximating sequence of MVQVLIp which
is α-well-posed in the generalized sense. Hence, {xn} has a subsequence {xnk

}
converging to some point of Tp which is a contradiction to (4.1).

Conversely, let Qp(δ, ϵ) ̸= ∅ and limδ→0,ϵ→0 µ(Qp(δ, ϵ)) = 0. We first show
that Qp(δ, ϵ) is closed, ∀ δ, ϵ > 0. Let xn ∈ Qp(δ, ϵ) such that xn → x. Then,
there exists pn ∈ B(p, δ) such that d(xn, S(pn, xn)) ≤ ϵ and

h(pn, xn, η(xn, y)) + ϕ(xn, y) �intC

(
α

2
∥xn − y∥2 + ϵ

)
e, ∀ y ∈ S(pn, xn).

P being finite dimensional, pn → p̄ ∈ B(p, δ). As, d(xn, S(pn, xn)) ≤ ϵ < ϵ+ 1
n ,

there exists yn ∈ S(pn, xn) such that ∥xn − yn∥ < ϵ + 1
n . S being (s, w)-closed

and (s, w)-subcontinuous, {yn} has a subsequence {ynk
} which converges weakly

to y ∈ S(p̄, x). Thus,

d(x, S(p̄, x)) ≤ ∥x− y∥ ≤ lim inf ∥xnk
− ynk

∥ ≤ lim inf

(
ϵ+

1

k

)
= ϵ,



436 Garima Virmani and Manjari Srivastava

that is, d(x, S(p̄, x)) ≤ ϵ. Let z ∈ S(p̄, x). S being (s, s)-lower semicontinuous,
there exists zn ∈ S(pn, xn) such that zn → z. Thus, h(pn, xn, η(xn, zn)) +

ϕ(xn, zn) �intC

(
α

2
∥xn − zn∥2 + ϵ

)
e. By continuity of h, η and ϕ, we have,

h(p̄, x, η(x, z)) + ϕ(x, z) �intC

(
α

2
∥x− z∥2 + ϵ

)
e, ∀ z ∈ S(p̄, x).

Hence, x ∈ Qp(δ, ϵ) which shows that Qp(δ, ϵ) is nonempty and closed. Also,
Tp =

∩
δ>0,ϵ>0 Qp(δ, ϵ). Since, µ(Qp(δ, ϵ)) → 0 as (δ, ϵ) → (0, 0), by the Theorem

on Page 412 of [13], we conclude that Tp is nonempty, compact and

e(Qp(δ, ϵ), Tp) = H(Qp(δ, ϵ), Tp) → 0 as(δ, ϵ) → (0, 0).

Let pn → p and {xn} be an α-approximating sequence for MVQVLIp. There
exists ϵn ↓ 0 such that d(xn, S(pn, xn)) ≤ ϵn and

h(pn, xn, η(xn, y)) + ϕ(xn, y) �intC

(
α

2
∥xn − y∥2 + ϵn

)
e,

∀ y ∈ S(pn, xn), ∀ n ∈ N.

Take δn = ∥pn − p∥, xn ∈ Qp(δn, ϵn). There exists a sequence {x̄n} ∈ Tp such
that

∥xn − x̄n∥ = d(xn, Tp) ≤ e(Qp(δn, ϵn), Tp) → 0.

Since, Tp is compact, {x̄n} has a subsequence {x̄nk
} converging to {x̄} ∈ Tp.

Hence, the corresponding sequence {xnk
} of {xn} converges strongly to {x̄}

proving that MVQVLIp is α-well-posed in the generalized sense. �

Theorem 4.2. Let the assumptions be as in Theorem 3.3 and let P be finite
dimensional. Then, MVQV LIp is α-L-well-posed in the generalized sense if and
only if, ∀ p ∈ P , Lp(δ, ϵ) ̸= ∅, ∀ δ, ϵ > 0 and lim

δ→0,ϵ→0
µ(Lp(δ, ϵ)) = 0.

Proof. Let MVQVLIp be α-L-well-posed in the generalized sense. As h is C-
η-pseudomonotone with respect to ϕ, Lp(δ, ϵ) ̸= ∅, ∀ δ, ϵ > 0. To show that
lim

δ→0,ϵ→0
µ(Lp(δ, ϵ)) = 0, the proof is similar as in Theorem 4.1.

Conversely, let

Lp(δ, ϵ) ̸= ∅,∀δ, ϵ > 0and lim
δ→0,ϵ→0

µ(Lp(δ, ϵ)) = 0.

As done in the previous theorem, we get that every α-L-approximating sequence
has a convergent subsequence and this limit is a solution of MVQVLIp, proving
MVQVLIp is α-L-well-posed in the generalized sense. �

Corollary 4.3. MVQV LIp is α-well-posed in the generalized sense (respectively
α-L-well-posed in the generalized sense) if and only if, ∀ p ∈ P , the solution set of
MVQV LIp , that is, Tp is nonempty compact and e(Qp(δ, ϵ), Tp) → 0 as (δ, ϵ) →
(0, 0) (respectively if and only if Tp is nonempty compact and e(Lp(δ, ϵ), Tp) → 0
as (δ, ϵ) → (0, 0).)
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Proof. Let MVQVLIp be α-well-posed in the generalized sense. Thus, Tp ̸= ∅
and compact. If e(Qp(δ, ϵ), Tp) 9 0 as (δ, ϵ) → (0, 0) then there exists τ > 0, se-
quences {δn}, {ϵn} with δn → 0, ϵn → 0, xn ∈ K with xn ∈ Qp(δn, ϵn) such that
xn /∈ Tp +B(0, τ). Since, xn ∈ Qp(δn, ϵn), {xn} is an α-approximating sequence
of MVQVLIp which is α-well-posed in the generalized sense. Hence, {xn} has a
subsequence {xnk

} converging to some point of Tp, which is a contradiction.
Conversely, let Tp be nonempty compact and e(Qp(δ, ϵ), Tp) → 0 as (δ, ϵ) →

(0, 0). Let pn → p and {xn} be an α-approximating sequence for MVQVLIp.
There exists ϵn ↓ 0 such that d(xn, S(pn, xn)) ≤ ϵn and

h(pn, xn, η(xn, y))+ϕ(xn, y) �intC

(
α

2
∥xn−y∥2+ϵn

)
e, ∀ y∈S(pn, xn), ∀ n∈N.

Take δn = ∥pn − p∥, xn ∈ Qp(δn, ϵn).
There exists a sequence {x̄n} ∈ Tp such that

∥xn − x̄n∥ = d(xn, Tp) ≤ e(Qp(δn, ϵn), Tp) → 0.

Since, Tp is compact, {x̄n} has a subsequence {x̄nk
} converging to {x̄} ∈ Tp.

Hence, the corresponding sequence {xnk
} of {xn} converges strongly to {x̄}

proving that MVQVLIp is α-well-posed in the generalized sense.
On the similar lines as above, we can show that MVQVLIp is α-L-well-posed in

the generalized sense if and only if Tp is nonempty compact and e(Lp(δ, ϵ), Tp) →
0 as (δ, ϵ) → (0, 0). �

5. Conditions for α-well-posedness and α-L-well-posedness

In the following section, we will show that α-well-posedness and α-L-well-
posedness of MVQVLIp is equivalent to the existence and uniqueness of its so-
lution.

Theorem 5.1. Let K be a nonempty compact and convex subset of a real Banach
space X. Let ϕ : K × K → Y be a continuous bifunction with ϕ(x, .) concave
and ϕ(x, x) = 0 for fixed x. Let η : K ×K → X be a continuous mapping with
y 7→ h(p, x, η(x, y)) concave and η(x, x) = 0. Let S : P×K → 2K be a nonempty
set-valued map which is convex valued, (s, w)-closed, (s, w)-subcontinuous and
(s, s)-lower semicontinuous. Let h : P ×K ×X → Y be a continuous function
which is positively homogeneous in the 3rd variable. Then, MVQV LIp is α-L-
well-posed if and only if it has a unique solution.

Proof. Let MVQVLIp be α-L-well-posed. Then, by definition, it has a unique
solution.

Conversely, let MVQVLIp has a unique solution say z0 and {xn} be an α-L-
approximating sequence. Let pn → p ∈ P . Since, K is compact, {xn} has a
subsequence still denoted by {xn} converging to x0 ∈ K. It is sufficient to show
that x0 is a solution of MVQVLIp. Then, x0 = z0 and the whole sequence {xn}
would then converge to z0. Following the proof of Theorem 3.1, we get that x0

is a solution of MVQVLIp. �
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Theorem 5.2. Let the assumptions be as in Theorem 5.1. Further, assume that
h is C-η-pseudomonotone with respect to ϕ. Then, MVQV LIp is α-well-posed
if and only if it has a unique solution.

Proof. Necessary condition holds obviously.
For sufficient condition, let MVQVLIp has a unique solution say x0. Let

{pn} be a sequence such that pn → p ∈ P and {xn} be an α-approximating
sequence for MVQVLIp. As h is C-η-pseudomonotone with respect to ϕ. Then,
{xn} is also an α-L-approximating sequence. By Theorem 5.1, MVQVLIp is
α-L-well-posed. Hence, xn → x0 and so, MVQVLIp is α-well-posed. �

6. Conclusion

A mixed vector quasivariational-like inequality is considered and various re-
sults characterizing (generalized) α-well-posedness and (generalized) α-L-well-
posedness for this problem have been given. For further research, Levitin–Polyak
well-posedness can be investigated for the same problem.
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