
J. Appl. Math. & Informatics Vol. 32(2014), No. 3 - 4, pp. 389 - 403
http://dx.doi.org/10.14317/jami.2014.389

PERFORMANCE COMPARISON OF PRECONDITIONED

ITERATIVE METHODS WITH DIRECT PRECONDITIONERS†

JAE HEON YUN∗, HYO JIN LIM AND KYOUM SUN KIM

Abstract. In this paper, we first provide comparison results of precon-

ditioned AOR methods with direct preconditioners I + βL, I + βU and
I + β(L+U) for solving a linear system whose coefficient matrix is a large
sparse irreducible L-matrix, where β > 0. Next we propose how to find a
near optimal parameter β for which Krylov subspace method with these

direct preconditioners performs nearly best. Lastly numerical experiments
are provided to compare the performance of preconditioned iterative meth-
ods and to illustrate the theoretical results.
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1. Introduction

In this paper, we consider the following nonsingular linear system

Ax = b, x, b ∈ Rn, (1)

where A = (aij) ∈ Rn×n is a large sparse irreducible L-matrix. Throughout
the paper, we assume that A = I − L − U , where I is the identity matrix,
and L and U are strictly lower triangular and strictly upper triangular matrices,
respectively. Then the AOR iterative method [3] for solving the linear system (1)
can be expressed as

xk+1 = Trωxk +Mrωb, k = 0, 1, . . . , (2)

where x0 is an initial vector, ω and r are real parameters with ω ̸= 0,

Trω = (I − rL)−1((1− ω)I + (ω − r)L+ ωU), (3)
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and Mrω = ω(I − rL)−1. The Trω is called an iteration matrix of the AOR
iterative method.

In order to accelerate the convergence of iterative method for solving the
linear system (1), the original linear system (1) is transformed into the following
preconditioned linear system

PAx = Pb, (4)

where P , called a preconditioner, is a nonsingular matrix. Various types of
preconditioners P , which are nonnegative matrices with unit diagonal entries,
have been proposed by many researchers [2, 4, 5, 6, 7, 9, 11, 14, 15, 17]. In
this paper, we study comparison results of preconditioned iterative methods
corresponding to direct preconditioners P = Pl = I + βL, P = Pu = I + βU
and P = Pb = I + β(L + U), where β is a positive real number. Here, direct
preconditioner means that the preconditioner can be constructed without any
computational step. The preconditioner Pu was first introduced by Kotakemori
et al [4], and it has been studied further in [9, 11, 15]. The preconditioner Pl for
β = 1 was first proposed by Usui et al [11], so it is worth studying further Pl for
β > 0 in this paper.

Let Au = PuA and UL = Γ + E + F , where Γ is a diagonal matrix, E is
a strictly lower triangular matrix, and F is a strictly upper triangular matrix.
Then, one obtains

Au = (I + βU)(I − L− U) = Du − Lu − Uu, (5)

where Du = I − βΓ, Lu = L+ βE, and Uu = (1− β)U + βU2 + βF .
Let Al = PlA and LU = Γ1 + E1 + F1, where Γ1 is a diagonal matrix, E1 is

a strictly lower triangular matrix, and F1 is a strictly upper triangular matrix.
Then, one obtains

Al = (I + βL)(I − L− U) = Dl − Ll − Ul, (6)

where Dl = I − βΓ1, Ll = (1− β)L+ βL2 + βE1, and Ul = U + βF1.
Recently, Wang and Song [14] studied convergence of the preconditioned AOR

method with preconditioner Pb = I+β(L+U), where 0 < β ≤ 1. Let Ab = PbA.
Then, one obtains

Ab = (I + β(L+ U))(I − L− U) = Db − Lb − Ub, (7)

where Db = I − βΓ − βΓ1, Lb = (1 − β)L + βL2 + βE + βE1, and Ub =
(1− β)U + βU2 + βF + βF1.

If we apply the AOR iterative method to the preconditioned linear system (4),
then we get the preconditioned AOR iterative method whose iteration matrix is

Tu,r,ω = (Du − rLu)
−1((1− ω)Du + (ω − r)Lu + ωUu) if P = Pu

Tl,r,ω = (Dl − rLl)
−1((1− ω)Dl + (ω − r)Ll + ωUl) if P = Pl

Tb,r,ω = (Db − rLb)
−1((1− ω)Db + (ω − r)Lb + ωUb) if P = Pb.

(8)

Notice that the computational costs for constructing Au, Al and Ab will not be
expensive since A is assumed to be a large sparse matrix.
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The purpose of this paper is to provide performance comparison of precondi-
tioned iterative methods with direct preconditioners Pl, Pu and Pb for solving a
linear system whose coefficient matrix is a large sparse irreducible L-matrix sat-
isfying some weaker conditions than those used in the existing literature. This
paper is organized as follows. In Section 2, we present some notation, defini-
tions and preliminary results. In Section 3, we provide comparison results of
preconditioned AOR methods with preconditioner Pu. In Section 4, we provide
comparison results of preconditioned AOR methods with preconditioners Pl and
Pb. In Section 5, we propose how to find a near optimal parameter β for which
Krylov subspace method with the direct preconditioners Pl, Pu and Pb performs
nearly best. In Section 6, numerical experiments are provided to compare the
performance of preconditioned iterative methods and to illustrate the theoretical
results in Sections 3 to 5. Lastly, some conclusions are drawn.

2. Preliminaries

A matrix A = (aij) ∈ Rn×n is called a Z-matrix if aij ≤ 0 for i ̸= j, an
L-matrix if A is a Z-matrix and aii > 0 for i = 1, 2, . . . , n, and an M -matrix if A
is a Z-matrix and A−1 ≥ 0. For a vector x ∈ Rn, x ≥ 0 (x > 0) denotes that all
components of x are nonnegative (positive). For two vectors x, y ∈ Rn, x ≥ y
(x > y) means that x− y ≥ 0 (x− y > 0). These definitions carry immediately
over to matrices. For a square matrix A, ρ(A) denotes the spectral radius of A,
and A is called irreducible if the directed graph of A is strongly connected [13].
Some useful results which we refer to later are provided below.

Theorem 2.1 (Varga [13]). Let A ≥ 0 be an irreducible matrix. Then

(a) A has a positive eigenvalue equal to ρ(A).
(b) A has an eigenvector x > 0 corresponding to ρ(A).
(c) ρ(A) is a simple eigenvalue of A.

Theorem 2.2 (Berman and Plemmons [1]). Let A ≥ 0 be a matrix. Then the
following hold.

(a) If Ax ≥ βx for a vector x ≥ 0 and x ̸= 0, then ρ(A) ≥ β.
(b) If Ax ≤ γx for a vector x > 0, then ρ(A) ≤ γ. Moreover, if A is

irreducible and if βx ≤ Ax ≤ γx, equality excluded, for a vector x ≥ 0
and x ̸= 0, then β < ρ(A) < γ and x > 0.

(c) If βx < Ax < γx for a vector x > 0, then β < ρ(A) < γ.

Theorem 2.3 (Li and Sun [6]). Let A be an irreducible matrix, and let A =
M − N be an M -splitting of A with N ̸= 0. Then there exists a vector x > 0
such that M−1Nx = ρ(M−1N)x and ρ(M−1N) > 0.

3. Comparison results for preconditioner Pu

We first provide a comparison result for the preconditioned Gauss-Seidel
method with the preconditioner Pu.
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Theorem 3.1. Let A = (aij) ∈ Rn×n be an irreducible L-matrix. Suppose that
0 < (UL)ii < 1 for all 1 ≤ i ≤ n − 1, where (UL)ii =

∑n
j=i+1 aijaji. Let

T = (I − L)−1U and Tu = (Du − Lu)
−1Uu, where Du, Lu and Uu are defined

by (5). If 0 < β ≤ 1, then

(a) ρ(Tu) < ρ(T ) if ρ(T ) < 1.
(b) ρ(Tu) = ρ(T ) if ρ(T ) = 1.
(c) ρ(Tu) > ρ(T ) if ρ(T ) > 1.

Proof. Since A is an L-matrix, D, L and U are nonnegative. Since 0 < β ≤ 1
and (UL)ii < 1, Du, Lu and Uu are nonnegative and thus Tu ≥ 0. Since
A = (I − L) − U is an M-splitting of A and U ̸= 0, from Theorem 2.3 there
exists a vector x > 0 such that Tx = λx, where λ = ρ(T ). From Tx = λx, one
easily obtains

U2x = λ(U − UL)x. (9)

Using (5) and (9),

Tux− λx = (Du − Lu)
−1 (Uu − λ(Du − Lu))x

= β(Du − Lu)
−1 (U2 − U + F + λ(Γ + E)

)
x

= β(Du − Lu)
−1 (λ(U − UL)− U + F + λ(UL− F ))x

= β(λ− 1)(Du − Lu)
−1(U − F )x

= β(λ− 1)(Du − Lu)
−1(Γ + E + λ−1U2)x.

(10)

Let y = (Γ + E + λ−1U2)x. Since (UL)ii > 0 for all 1 ≤ i ≤ n − 1, y ≥ 0 is a
nonzero vector whose first (n−1) components are positive and last component is
zero. Since A is irreducible, Lu = L+βE ≥ 0 is a strictly lower triangular matrix
whose last row vector is nonzero and thus (Du − Lu)

−1y is a positive vector. It
follows that Tux < λx from (10) if λ < 1. From Theorem 2.2, ρ(Tu) < ρ(T ) < 1.
For the cases of λ = 1 and λ > 1, Tux = λx and Tux > λx are obtained
from (10), respectively. Hence, the theorem follows from Theorem 2.2. �

We now provide a comparison result for the preconditioned AOR method with
the preconditioner Pu.

Theorem 3.2. Let A = (aij) ∈ Rn×n be an irreducible L-matrix. Suppose
that 0 < r ≤ ω ≤ 1 (r ̸= 1) and 0 < (UL)ii < 1 for all 1 ≤ i ≤ n − 1,
where (UL)ii =

∑n
j=i+1 aijaji. Let Tr,ω and Tu,r,ω be defined by (3) and (8),

respectively. If 0 < β ≤ 1, then

(a) ρ(Tu,r,ω) < ρ(Tr,ω) if ρ(Tr,ω) < 1.
(b) ρ(Tu,r,ω) = ρ(Tr,ω) if ρ(Tr,ω) = 1.
(c) ρ(Tu,r,ω) > ρ(Tr,ω) if ρ(Tr,ω) > 1.

Proof. Notice that Tr,ω can be expressed as Tr,ω = (1−ω)I+ω(1−r)L+ωU+H,
where H is a nonnegative matrix. By assumptions, it can be seen that Tr,ω ≥ 0
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is irreducible and Tu,r,ω ≥ 0. From Theorem 2.1, there exists a vector x > 0
such that Tr,ωx = λx, where λ = ρ(Tr,ω). From Tr,ωx = λx, one easily obtains

ωU2x = ((λ+ ω − 1)U + (r − ω − λr)UL)x. (11)

Using (5) and (11),

Tu,r,ωx− λx = (Du − rLu)
−1 ((1− ω)Du + (ω − r)Lu + ωUu − λ(Du − rLu))x

= β(Du − rLu)
−1

(
(ω + λ− 1)Γ + (ω − r + λr)E − ωU + ωU2 + ωF

)
x

= β(Du − rLu)
−1 ((r + λ− 1− λr)Γ + (λ− 1)U + r(1− λ)F )x

= β(λ− 1)(Du − rLu)
−1((1− r)Γ + U − rF )x

= β(λ− 1)(Du − rLu)
−1( Γ + rE

+ λ−1((1− ω)U + (ω − r)UL+ ωU2) )x.

(12)

Let y = (Γ + rE + λ−1((1− ω)U + (ω − r)UL+ ωU2))x. Since 0 < r ≤ ω ≤ 1
and (UL)ii > 0 for all 1 ≤ i ≤ n−1, y ≥ 0 is a nonzero vector whose first (n−1)
components are positive and last component is zero. Since A is irreducible and
r ̸= 0, Lu = L + βE ≥ 0 is a strictly lower triangular matrix whose last row
vector is nonzero and thus (Du − rLu)

−1y is a positive vector. It follows that
Tu,r,ωx < λx from (12) if λ < 1. From Theorem 2.2, ρ(Tu,r,ω) < ρ(Tr,ω) < 1.
For the cases of λ = 1 and λ > 1, Tu,r,ωx = λx and Tu,r,ωx > λx are obtained
from (12), respectively. Hence, the theorem follows from Theorem 2.2. �

If 0 < β < 1 in Theorem 3.2, the assumptions for (UL)ii can be weakened.

Theorem 3.3. Let A = (aij) ∈ Rn×n be an irreducible L-matrix. Suppose that
0 < r ≤ ω ≤ 1 (r ̸= 1), (UL)ii < 1 (1 ≤ i ≤ n − 1) and (UL)ii > 0 for at
least one i, where (UL)ii =

∑n
j=i+1 aijaji. Let Tr,ω and Tu,r,ω be defined by (3)

and (8), respectively. If 0 < β < 1, then

(a) ρ(Tu,r,ω) < ρ(Tr,ω) if ρ(Tr,ω) < 1.
(b) ρ(Tu,r,ω) = ρ(Tr,ω) if ρ(Tr,ω) = 1.
(c) ρ(Tu,r,ω) > ρ(Tr,ω) if ρ(Tr,ω) > 1.

Proof. Since A is irreducible and β < 1, Au is also irreducible. Hence it can be
easily shown that both Tr,ω and Tu,r,ω are nonnegative and irreducible. From
Theorem 2.1, there exists a vector x > 0 such that Tr,ωx = λx, where λ =
ρ(Tr,ω). From equation (12), one obtains

Tu,r,ωx− λx = β(λ− 1)(Du − rLu)
−1( Γ + rE

+ λ−1((1− ω)U + (ω − r)UL+ ωU2) )x.
(13)

If λ < 1, then from (13) Tu,r,ωx ≤ λx and Tu,r,ωx ̸= λx. Since Tu,r,ω is
irreducible, Theorem 2.2 implies that ρ(Tu,r,ω) < ρ(Tr,ω) < 1. For the cases
of λ = 1 and λ > 1, Tu,r,ωx = λx and Tu,r,ωx ≥ λx (with Tu,r,ωx ̸= λx) are
obtained from (13), respectively. Hence, the theorem follows from Theorem 2.2.

�

By combining Theorems 3.1 and 3.2, we can obtain the following theorem.
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Theorem 3.4. Let A = (aij) ∈ Rn×n be an irreducible L-matrix. Suppose that
0 < r ≤ ω ≤ 1 and 0 < (UL)ii < 1 for all 1 ≤ i ≤ n − 1, where (UL)ii =∑n

j=i+1 aijaji. Let Tr,ω and Tu,r,ω be defined by (3) and (8), respectively. If
0 < β ≤ 1, then

(a) ρ(Tu,r,ω) < ρ(Tr,ω) if ρ(Tr,ω) < 1.
(b) ρ(Tu,r,ω) = ρ(Tr,ω) if ρ(Tr,ω) = 1.
(c) ρ(Tu,r,ω) > ρ(Tr,ω) if ρ(Tr,ω) > 1.

Proof. If r = 1, then ω = 1 and thus the theorem follows from Theorem 3.1. If
r ̸= 1, then the theorem follows from Theorem 3.2. �

4. Comparison results for preconditioner Pl and Pb

We first provide a comparison result for the preconditioned Gauss-Seidel
method with the preconditioner Pl.

Theorem 4.1. Let A = (aij) ∈ Rn×n be an irreducible L-matrix. Suppose

that 0 < (LU)ii < 1 for all 2 ≤ i ≤ n, where (LU)ii =
∑i−1

j=1 aijaji. Let

T = (I − L)−1U and Tl = (Dl − Ll)
−1Ul, where Dl, Ll and Ul are defined

by (6). If 0 < β ≤ 1, then

(a) ρ(Tl) < ρ(T ) if ρ(T ) < 1.
(b) ρ(Tl) = ρ(T ) if ρ(T ) = 1.
(c) ρ(Tl) > ρ(T ) if ρ(T ) > 1.

Proof. Since A is an L-matrix, D, L and U are nonnegative. Since 0 < β ≤ 1 and
(LU)ii < 1, Dl, Ll and Ul are nonnegative and thus Tl ≥ 0. Since A = (I−L)−U
is an M-splitting of A and U ̸= 0, from Theorem 2.3 there exists a vector x > 0
such that Tx = λx, where λ = ρ(T ). From Tx = λx, one easily obtains

Ux = λ(I − L)x

LUx = λ(L− L2)x
(14)

Using (6) and (14),

Tlx− λx = (Dl − Ll)
−1 (Ul − λ(Dl − Ll))x

= β(Dl − Ll)
−1

(
F1 + λΓ1 − λL+ λL2 + λE1

)
x

= β(Dl − Ll)
−1 (F1 + λΓ1 − LU + λE1)x

= β(Dl − Ll)
−1 (λΓ1 − Γ1 + λE1 − E1)x

= β(λ− 1)(Dl − Ll)
−1(Γ1 + E1)x.

(15)

Let y = (Γ1+E1)x. Since (LU)ii > 0 for all 2 ≤ i ≤ n, y ≥ 0 is a nonzero vector
whose first component is zero and last (n − 1) components are positive. Thus
z = (Dl −Ll)

−1y ≥ 0 is also a nonzero vector whose first component is zero and
last (n− 1) components are positive. Let

Tl =

(
0 T12

0 T22

)
, x =

(
x1

x2

)
and z =

(
0
z2

)
, (16)
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where z2 > 0, T12 ∈ R1×(n−1) and T12 ∈ R(n−1)×(n−1). From (15) and (16),

T12x2 − λx1 = 0

T22x2 − λx2 = β(λ− 1)z2.
(17)

Since z2 > 0, T22x2 < λx2 from (17) if λ < 1. From Theorem 2.2, ρ(T22) <
ρ(T ) < 1. Since ρ(Tl) = ρ(T22), ρ(Tl) < ρ(T ) is obtained. For the cases of λ = 1
and λ > 1, T22x2 = λx2 and T22x2 > λx2 are obtained from (17), respectively.
Hence, the theorem follows from Theorem 2.2. �

We now provide a comparison result for the preconditioned AOR method with
the preconditioner Pl.

Theorem 4.2. Let A = (aij) ∈ Rn×n be an irreducible L-matrix. Suppose
that 0 ≤ r, ω ≤ 1 (ω ̸= 0, r ̸= 1) and (LU)ii < 1 for all 2 ≤ i ≤ n, where

(LU)ii =
∑i−1

j=1 aijaji. Let Tr,ω and Tl,r,ω be defined by (3) and (8), respectively.
If 0 < β < 1, then

(a) ρ(Tl,r,ω) < ρ(Tr,ω) if ρ(Tr,ω) < 1.
(b) ρ(Tl,r,ω) = ρ(Tr,ω) if ρ(Tr,ω) = 1.
(c) ρ(Tl,r,ω) > ρ(Tr,ω) if ρ(Tr,ω) > 1.

Proof. By simple calculation, one can obtain

Tr,ω = (1− ω)I + ω(I − rL)−1((1− r)L+ U)

= (1− ω)I + ω((1− r)L+ U +H)

Tl,r,ω = (1− ω)I + ω(I − rD−1
l Ll)

−1((1− r)D−1
l Ll +D−1

l Ul)

= (1− ω)I + ω((1− r)D−1
l Ll +D−1

l Ul +Hl),

(18)

where H and Hl are nonnegative matrices. Since 0 ≤ r, ω ≤ 1 (ω ̸= 0, r ̸= 1)
and 0 < β < 1, it can be easily shown from (18) that both Tr,ω and Tl,r,ω

are nonnegative and irreducible. Hence, there exists a vector x > 0 such that
Tr,ωx = λx, where λ = ρ(Tr,ω). Using (6) and Tr,ωx = λx, one obtains

Tl,r,ωx− λx = (Dl − rLl)
−1 ((1− ω)Dl + (ω − r)Ll + ωUl − λ(Dl − rLl))x

= β(Dl − rLl)
−1

(
(ω + λ− 1)Γ1 + (ω − r + λr)(−L+ L2 + E1) + ωF1

)
x

= β(λ− 1)(Dl − rLl)
−1(Γ1 + rE1 + (1− r)L)x.

(19)

Let y = (Γ1 + rE1 + (1 − r)L)x. Since A is irreducible and r ̸= 1, y ≥ 0
is a nonzero vector whose first component is zero. If λ < 1, then from (19)
Tl,r,ωx ≤ λx and Tl,r,ωx ̸= λx. Since Tl,r,ω is irreducible, Theorem 2.2 implies
that ρ(Tl,r,ω) < ρ(Tr,ω) < 1. For the cases of λ = 1 and λ > 1, Tl,r,ωx = λx and
Tl,r,ωx ≥ λx (with Tl,r,ωx ̸= λx) are obtained from (13), respectively. Hence,
the theorem follows from Theorem 2.2. �

Notice that Theorem 4.2 for preconditioner Pl does not require the assump-
tions r ≤ ω and (LU)ii > 0 as compared with Theorem 3.2 for preconditioner
Pu. If β = 1, the strict inequalities in Theorem 4.2 may not hold and only
inequalities are guaranteed.
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Lemma 4.3. Let A = (aij) ∈ Rn×n be an L-matrix. If A = I − L − U is an
M-matrix, then (LU)ii < 1 and (UL)ii < 1 for all i = 1, 2, . . . , n.

Proof. It is easy to show that (I +U)A and (I +L)A are Z-matrices. Since A is
an M-matrix, there exists a vector x > 0 such that Ax > 0. Thus (I+L)Ax > 0
and (I + U)Ax > 0. It follows that (I + L)A and (I + U)A are M-matrices
and so all diagonal components of (I + L)A and (I + U)A are positive. Hence
1 − (LU)ii > 0 and 1 − (UL)ii > 0 for all i = 1, 2, . . . , n, which completes the
proof. �

From Lemma 4.3, it can be seen that if A is an M-matrix, all theorems in
Sections 3 and 4 do not require the assumptions (LU)ii < 1 or (UL)ii < 1.
Lastly, we provide a comparison result of the preconditioned AOR method for
preconditioner Pb.

Lemma 4.4 ([8]). Suppose that A1 = M1 − N1 and A2 = M2 − N2 are weak
regular splittings of the monotone matrices A1 and A2, respectively, such that
M−1

2 ≥ M−1
1 . If there exists a positive vector x such that 0 ≤ A1x ≤ A2x, then

for the monotonic norm associated with x

∥M−1
2 N2∥x ≤ ∥M−1

1 N1∥x.
In particular, if M−1

1 N1 has a positive Perron vector, then

ρ(M−1
2 N2) ≤ ρ(M−1

1 N1).

Theorem 4.5. Let A be an irreducible M-matrix. Suppose that 0 ≤ r ≤ ω ≤
1 (ω ̸= 0). Let Tr,ω, Tl,r,ω and Tb,r,ω be defined by (3) and (8), respectively. If
0 < β ≤ 1, then

ρ(Tb,r,ω) ≤ ρ(Tl,r,ω) ≤ ρ(Tr,ω) < 1.

Proof. Since ρ(Tl,r,ω) ≤ ρ(Tr,ω) < 1 was shown in [14], it suffices to show
ρ(Tb,r,ω) ≤ ρ(Tl,r,ω). Since A is an M-matrix and 0 < β ≤ 1, there exists a
vector x > 0 such that Ax > 0, and PlA and PbA are also Z-matrices. It fol-
lows that PlA and PbA are M-matrices. Notice that PbAx ≥ PlAx > 0 and
(Db − rLb)

−1 ≥ (Dl − rLl)
−1. Since A is irreducible and 0 < β < 1, PlA is also

irreducible. Since PlA = 1
ω (Dl − rLl) − 1

ω ((1 − ω)Dl + (ω − r)Ll + ωUl) is an
M -splitting of PlA with Ul ̸= 0, Tl,r,ω has a positive Perron vector from Theo-
rem 2.3. Using Lemma 4.4, ρ(Tb,r,ω) ≤ ρ(Tl,r,ω) for 0 < β < 1. By continuity of
spectral radius, ρ(Tb,r,ω) ≤ ρ(Tl,r,ω) is also true for β = 1. Therefore, the proof
is complete. �

5. A near optimal parameter β for Krylov subspace method

In this section, we propose how to find a near optimal parameter β for which
Krylov subspace method with preconditioners Pl, Pu and Pb performs nearly
best. Before proceeding to the analysis for finding a near optimal parameter β,
we define the following notations. For X and Y in Rn×n, we define the inner
product ⟨X,Y ⟩F = tr(XTY ), where tr(Z) denotes the trace of the square matrix
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Z and XT denotes the transpose of the matrix X. The associated norm is the
well-known Frobenius norm denoted by ∥ · ∥F .

If P is a good preconditioner for Krylov subspace method, then PA is close to
the identity matrix I. Thus it would be a good idea to determine a value β such
that ∥PA− I∥F is minimized, where P is Pl, Pu or Pb. We call such a value β
a near optimal parameter for the preconditioned Krylov subspace method. We
first provide a near optimal parameter β for the preconditioner P = Pl.

Theorem 5.1. Let A = I − L − U be a large sparse nonsingular matrix, and
let Pl = I + βL be a preconditioner for Krylov subspace method. Then, a near
optimal parameter β is given by

β =
tr((LA)T(L + U))

∥LA∥2F
.

Proof. Note that (I+βL)A−I = βLA−(L+U). By definition of the Frobenius
norm, one obtains

∥βLA− (L+ U)∥2F = tr
(
(βLA− (L+ U))T (βLA− (L+ U))

)
= β2∥LA∥2F − 2β tr((LA)T (L+ U)) + ∥L+ U∥2F .

(20)

The equation (20) is a quadratic equation in β, so the minimum occurs when

β =
tr((LA)T(L + U))

∥LA∥2F
.

Hence the proof is complete. �

Similarly to the proof of Theorem 5.1, one can obtain a near optimal param-
eter β for the preconditioner P = Pu.

Theorem 5.2. Let A = I − L − U be a large sparse nonsingular matrix, and
let Pu = I + βU be a preconditioner for Krylov subspace method. Then, a near
optimal parameter β is given by

β =
tr((UA)T(L + U))

∥UA∥2F
.

Lastly, we provide a near optimal parameter β for the preconditioner P = Pb.

Theorem 5.3. Let A = I−L−U ∈ Rn×n be a large sparse nonsingular matrix,
and let Pb = I+β(L+U) be a preconditioner for Krylov subspace method. Then,
a near optimal parameter β is given by

β =
n

n+ ∥L+ U∥2F
.

Proof. Note that (I+β(L+U))A−I = (β−1)(L+U)−β(L+U)2. By property
of the Frobenius norm, one obtains

∥(β − 1)(L+ U)− β(L+ U)2∥F = ∥(L+ U)((β − 1)I − β(L+ U))∥F
≤ ∥L+ U∥F ∥(β − 1)I − β(L+ U)∥F .

(21)
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From (21), it is sufficient to minimize ∥(β−1)I−β(L+U)∥F in order to determine
a near optimal parameter β. Since tr(L+ U) = 0, one obtains

∥(β − 1)I − β(L+ U)∥2F = tr
(
((β − 1)I − β(L+ U))T ((β − 1)I − β(L+ U))

)
= (β − 1)2 n+ β2∥L+ U∥2F
= (n+ ∥L+ U∥2F )β2 − 2nβ + n.

(22)

The equation (22) is a quadratic equation in β, so the minimum occurs when

β =
n

n+ ∥L+ U∥2F
.

Hence the proof is complete. �

6. Numerical experiments

In this section, we provide numerical experiments to compare the performance
of preconditioned iterative methods and to illustrate the theoretical results ob-
tained in Sections 3 to 5. All numerical experiments are carried out on a PC
equipped with Intel Core i5-4570 3.2GHz CPU and 8GB RAM using MATLAB
R2013a. The preconditioned iterative methods used for numerical experiments
are the preconditioned AOR method and the right preconditioned BiCGSTAB
method [10, 12].

In Table 3, Iter denotes the number of iteration steps, CPU denotes the
elapsed CPU time in seconds, P denotes the preconditioner to be used, ILU(0)
denotes the incomplete factorization preconditioner without fill-ins, and β de-
notes a near optimal value computed by the formula given in Section 5. For
numerical tests using the right preconditioned BiCGSTAB, all nonzero elements
of sparse matrices are stored using sparse storage format which saves a lot of
CPU time, the initial vectors are set to the zero vector, and the iterations are

terminated if the current approximation xk satisfies ∥b−Axk∥2

∥b∥2
< 10−10, where

∥·∥2 refers to L2-norm.

Example 6.1. Consider the two dimensional convection-diffusion equation [15]

−∆u+ ux + 2uy = f(x, y) in Ω = (0, 1)× (0, 1) (23)

with the Dirichlet boundary condition on ∂Ω which denotes the boundary of
Ω. When the central difference scheme on a uniform grid with m ×m interior
node is applied to the discretization of the equation (23), we can obtain a linear
system Ax = b whose coefficient matrix A ∈ Rn×n is of the form

A = Im ⊗ Ph +Qh ⊗ Im,

where n = m2, Im denotes the identity matrix of order m, ⊗ denotes the Kro-
necker product, Ph = tridiag(−2+h

8 , 1,− 2−h
8 ) and Qh = tridiag(−1+h

4 , 0,−1−h
4 )

are m × m tridiagonal matrices with the step size h = 1
m . It is clear that this

matrix A is an irreducible nonsymmetric L-matrix. Numerical results of the
preconditioned AOR method for n = 502 = 2500 are provided in Table 1, and
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numerical results of the right preconditioned BiCGSTAB method for various
values of n are listed in Table 3.

Example 6.2. Consider the two dimensional Poisson’s equation

−∆u = f(x, y) in Ω = (0, 1)× (0, 1) (24)

with the Dirichlet boundary condition on ∂Ω. When the central difference
scheme on a uniform grid with m×m interior node is applied to the discretiza-
tion of the equation (24), we obtain a linear system Ax = b whose coefficient
matrix A ∈ Rn×n is given by

A = Im ⊗ P +Q⊗ Im,

where n = m2, P = tridiag(−1
4 , 1,−

1
4 ) and Q = tridiag(−1

4 , 0,−
1
4 ) are m ×m

tridiagonal matrices. Note that this matrix A is an irreducible symmetric L-
matrix. Numerical results of the preconditioned AOR method for n = 502 =
2500 are provided in Table 2.

In Figure 1, we depict the eigenvalue distributions of the preconditioned matri-
ces corresponding to 6 different preconditioners for Examples 6.1 when n = 302.
From Figure 1, it can be seen that eigenvalues of PbA are more clustered than
those of any other preconditioners. From Tables 1 and 2, it can be seen that
ρ(Tl,r,ω) < ρ(Tr,ω) does not hold for ω > 1 and r > 1, and ρ(Tb,r,ω) ≤ ρ(Tl,r,ω)
does not hold for β > 1. For test problems used in this paper, the preconditioner
Pu yields better optimal performance than other preconditioners Pl and Pb, and
the optimal values of β, ω and r for the preconditioned AOR method with Pu are
greater than or equal to 1 (see Tables 1 to 2). In other words, ω = r is around
1.3 and β = 1 for Examples 6.1 and 6.2. Further research is required to study
how to find optimal or near optimal values of β, ω and r for the preconditioned
AOR method.

From Table 3, it can be seen that the preconditioner Pb with a near optimal
parameter β performs much better than the ILU(0) preconditioner which is one
of the powerful preconditioners that are commonly used. It can be also seen
that the preconditioners Pl and Pu with near optimal parameters β perform
better than the preconditioner (I −L)−1. The performance of BiCGSTAB with
preconditioner (I −U)−1 is not provided here since its performance is similar to
that with the preconditioner (I − L)−1. Notice that a near optimal parameter
β proposed in Section 5 can be easily computed by MATLAB.

7. Conclusions

In this paper, we provided comparison results of preconditioned AOR meth-
ods with direct preconditioners Pl, Pu and Pb for solving a linear system whose
coefficient matrix is a large sparse irreducible L-matrix, which holds under some
weaker conditions than those used in the existing literature. These theoreti-
cal results are in good agreement with the numerical results (see Tables 1 and
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Table 1. Numerical results for ρ(Tr,ω), ρ(Tu,r,ω), ρ(Tl,r,ω) and ρ(Tb,r,ω)
with various values of β, r and ω for Example 6.1.

β ω r ρ(Tr,ω) ρ(Tu,r,ω) ρ(Tl,r,ω) ρ(Tb,r,ω)

1 0.8 0.6 0.9977 0.9955 0.9965 0.9939
0.8 0.8 0.9973 0.9943 0.9961 0.8928
1.0 0.8 0.9966 0.9929 0.9952 0.9910
1.0 1.0 0.9960 0.9903 0.9946 0.9893
1.1 1.1 0.9951 0.9870 0.9955 0.9869
1.2 1.2 0.9939 0.9818 1.2877 0.9839
1.3 1.3 0.9925 0.9725 1.5853 0.9800

1.1 0.8 0.6 0.9977 0.9952 0.9964 1.3385
0.8 0.8 0.9973 0.9939 0.9960 1.4084
1.0 0.8 0.9966 0.9923 0.9950 1.5105
1.0 1.0 0.9960 0.9894 0.9945 1.6288
1.2 1.2 0.9939 0.9791 1.4964 1.9468
1.3 1.3 0.9925 0.9666 1.8379 2.1549

0.9 0.8 0.6 0.9977 0.9958 0.9966 0.9944
0.8 0.8 0.9973 0.9947 0.9962 0.9934
1.0 1.0 0.9960 0.9912 0.9947 0.9901
1.1 1.1 0.9951 0.9883 0.9938 0.9879
1.2 1.2 0.9939 0.9841 1.0966 0.9852
1.3 1.3 0.9925 0.9768 1.3541 0.9817

Table 2. Numerical results for ρ(Tr,ω), ρ(Tu,r,ω), ρ(Tl,r,ω) and ρ(Tb,r,ω)
with various values of β, r and ω for Example 6.2.

β ω r ρ(Tr,ω) ρ(Tu,r,ω) ρ(Tl,r,ω) ρ(Tb,r,ω)

1 0.8 0.6 0.9978 0.9958 0.9967 0.9942
0.8 0.8 0.9975 0.9947 0.9964 0.9933
1.0 0.8 0.9968 0.9933 0.9955 0.9916
1.0 1.0 0.9962 0.9909 0.9949 0.9899
1.1 1.1 0.9954 0.9878 0.9957 0.9877
1.2 1.2 0.9943 0.9830 1.2880 0.9849
1.3 1.3 0.9930 0.9742 1.5857 0.9813

1.1 0.8 0.6 0.9978 0.9955 0.9966 1.3390
0.8 0.8 0.9975 0.9942 0.9963 1.4091
1.0 0.8 0.9968 0.9928 0.9953 1.5114
1.0 1.0 0.9962 0.9900 0.9948 1.6300
1.2 1.2 0.9943 0.9804 1.4968 1.9485
1.3 1.3 0.9930 0.9687 1.8384 2.1570

0.9 0.8 0.6 0.9978 0.9960 0.9968 0.9947
0.8 0.8 0.9975 0.9950 0.9965 0.9938
1.0 1.0 0.9962 0.9917 0.9951 0.9907
1.1 1.1 0.9954 0.9891 0.9942 0.9887
1.2 1.2 0.9943 0.9850 1.0968 0.9861
1.3 1.3 0.9930 0.9782 1.3544 0.9828
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Figure 1. Spectra of the preconditioned matrices correspond-
ing to several preconditioners for Example 6.1 when n = 302

2). However, further research is required to study how to find optimal or near
optimal values of β, ω and r for the preconditioned AOR method.
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Table 3. Numerical results of preconditioned BiCGSTAB for Example 6.1.

P n Iter CPU β
1282 306 0.50

(I − L)−1 2502 727 4.65
4002 1529 31.2
1282 95 0.20

ILU(0) 2502 192 1.45
4002 273 6.38
1282 166 0.12 0.8013

Pb 2502 308 1.04 0.8006
4002 478 4.97 0.8004
1282 455 0.30 0.7286

Pl 2502 794 2.53 0.7279
4002 2432 25.6 0.7277
1282 327 0.21 0.7286

Pu 2502 1172 3.74 0.7279
4002 1926 20.3 0.7277

We also proposed how to find a near optimal parameter β for which Krylov
subspace method with preconditioners Pl, Pu and Pb performs nearly best. Nu-
merical experiments showed that BiCGSTAB with the preconditioner Pb with a
near optimal parameter β performs much better than the ILU(0) preconditioner
which is one of the powerful preconditioners that are commonly used. It was
also seen that BiCGSTAB with the preconditioners Pl and Pu with near opti-
mal parameters β perform better than the preconditioner (I − L)−1 (see Table
3). Notice that a near optimal parameter β proposed in Section 5 can be easily
computed by MATLAB.
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