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FUZZY REGRESSION TOWARDS A GENERAL INSURANCE
APPLICATIONT

JOSEPH H. T. KIM AND JOOCHEOL KIM*

ABSTRACT. In many non-life insurance applications past data are given in a
form known as the run-off triangle. Smoothing such data using parametric
crisp regression models has long served as the basis of estimating future
claim amounts and the reserves set aside to protect the insurer from future
losses. In this article a fuzzy counterpart of the Hoerl curve, a well-known
claim reserving regression model, is proposed to analyze the past claim
data and to determine the reserves. The fuzzy Hoerl curve is more flexible
and general than the one considered in the previous fuzzy literature in
that it includes a categorical variable with multiple explanatory variables,
which requires the development of the fuzzy analysis of covariance, or fuzzy
ANCOVA. Using an actual insurance run-off claim data we show that the
suggested fuzzy Hoerl curve based on the fuzzy ANCOVA gives reasonable
claim reserves without stringent assumptions needed for the traditional
regression approach in claim reserving.
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1. Introduction

In non-life insurance applications determining the evolution of the future
claims is an important consideration for insurance companies. The estimated
amount of future claims then forms a basis for the reserve which must be set
aside to protect the insurer from future losses. In the current article we focus
on non-life insurance contracts, such as the auto and medical insurance, and
attempt to find the fair reserve using the fuzzy regression methodology.
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The traditional claim reserving approach in the insurance literature typically
takes the following sequential steps to determine the reserve amount to be held
by the insurer for an insurance portfolio. First, the claim trend is estimated from
the past claim data using some standard regression models. Second, assuming
that the future claim pattern would emerge in a similar fashion as observed in
the past, future claims are projected based on the estimated regression model.
This step also allows that the stochastic characteristic of the future claims can
be captured by the perturbation term of the regression error term. Finally, using
the predicted claim amounts, the reserve of the portfolio is determined by the
difference between the predicted ultimate future claim amount and the (known)
current claim amount.

While this crisp approach can capture some stochastic aspects of future un-
certainty, its adoption of the standard regression models is criticized on several
bases. For example, the number of data to fit the regression model is typically
of small size, which could lead to inadequate statistical analyses. Also, more
importantly, the set of error assumptions required for regression analyses, such
as the independence among the perturbation terms, is easily violated under the
crisp approach. This may seriously distort the credibility of the predicted future
claims as well as the degree of its uncertainty.

In light of these shortcomings, other alternatives and generalizations of insur-
ance claim reserving methods have been proposed in the literature; see, e.g., [2]
for a survey of various reserving schemes. Among these [8] offers an alternative
reserving method based on a fuzzy theory. In its original paper, [8] utilizes the
simple fuzzy linear regression of [3] on the link ratio' on the log-transformed past
data. The reserves obtained from this fuzzy regression is reported to perform
well compared to the traditional crisp reserving approach, with less stringent
assumptions on the error terms of the ordinary least square regression method.
[8] also provides a concise survey for other insurance applications of the fuzzy
theory.

Our contribution in this paper is twofold. First, we extend the fuzzy claim
reserving method of [8] where the simple fuzzy regression is adopted ignoring
the cohort (that is, calendar year) effect in the claim data. We employ a more
general parametric called the Hoerl curve which accommodates the cohort effect
as well as the development periods; see, e.g., [2], [11] and [4]. The use of the
Hoerl curve, however, calls for a statistical analysis known as the analysis of
covariance, or ANCOVA, a combination of the linear regression and the analysis
of variance. Therefore our second contribution is this paper is a development of
the fuzzy ANCOVA model.

The present article is organized as follows. In Section 2 some backgrounds
on the fuzzy numbers and regression are presented. Section 3 explains how the
crisp regression method is used for the traditional claim reserving in insurance
applications. In particular, the Hoerl curve is introduced as a flexible parametric

1See the next section for details.
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model, which is an ANCOVA model, a blending of the linear regression model
and the analysis of variance (ANOVA). In Section 4, the fuzzy counterpart of
the crisp Hoerl curve is proposed along with the fuzzy ANCOVA procedure.
The resulting fuzzy reserves are also calculated for the working data. Through-
out the paper we use an actual insurance data retrieved from [4] for numerical
illustrations.

2. Fuzzy numbers and fuzzy regression

2.1. Fuzzy numbers. A fuzzy number (FN) is a fuzzy subset a defined over
real numbers. Among different choices of FNs we focus on Triangular FNs
(TFNs) for its practicality and mathematical tractability. A TFN is defined as
a = (a,l,r,) where a is the center (or core) and the latter two stand for the left
and right spreads, respectively. A characterization of such a FN can be made
explicit via its membership function

% a—lg, <x<a,

pa(z) = ‘”:7‘;7“7 a<z<a+t+rg,
0 otherwise.
or, alternatively, by its a-cuts:
ao = [a(a),a(@)] = [a —la(1 — ), a+74(1 - a)] 1)

2.2. Fuzzy regression. Consider an n-variate crisp function y = f(61,...,6,).
In the regression context 6; is the ith regression coefficient. If 64, ...,6,, are not
crisp numbers but FNs aq, ..., a,, we have

b= f(a,...,an) (2)
If we restrict f(-) to be linear so that b = f (a1, ..., @) = .1, @, where symbol

x; has been deliberately chosen to relate to regression models, the resulting bis
again a TFN with the three elements given by

n n n
b=> i, b= Y lalwl+ > el
i=1 i=1,2;,>0 i=1,2;<0
and
n n
Ty = Z rai|xi‘ + Z laq: xl' (3)

i=1,2;>0 i=1,2;<0

In fact, for the linear functional case, we can not only obtain b, but the closed
expression for the a—cuts of b as well. Let us suppose without loss of generality
that f is increasing in the first m < n variables (i.e., 61, ...,0,,) and decreasing
in the remaining variables (i.e., @41, ..., 0n), b’s a-cuts are then simply

bo = [F(a1(Q), ey @y, (@), Gmi1 (@), ooy Tn (),
@), oy (@), @iy (@), ..oy @y ()] (4)
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Now we describe the fuzzy regression (FR) of [3], an extension of [10]. The
FR to be introduced here is a natural applications of the linear function result
explained above. Consider a sample of size n with m explanatory variables. The
FR is then stated as

}N/j :(~10+6~61X1j +---+demj (5)
where the coefficients are fuzzy and the explanatory variables are crisp. As-
suming the TFN for all FNs, this has a nice solution for Y; = (Yj,ly,,ry;) as
before:

Yj = Qg +ZaiXij, le = lao + Z lai Xij| + Z Ta; Xij| (6)
% x;52>0 z;5<0
and 1y, =7+ Y 7o Xi|+ D la,|Xi] (7)
;>0 x5 <0

To estimate FNs ag, a1, ..., a,, we take the following two steps:

(1) The cores of ag,ay, ..., am are estimated using the ordinary least squares
(OLS) regression method. The estimated cores are denoted dg, a1, ..., dm

(2) The left and right spreads of ag, a1, ..., G, are estimated from the follow-
ing optimization, for a given minimum accomplishment level a*:

Minimize: ZZZM\XM + ZZTQiLXijl
j=1i=0 j=1i=0
Subject to

a0+ Y aiXi; — |lag + O La| Xigl+ Y ra| Xyl | 1—a") <Y
=1

z;52>0 z;5<0

d0+zd¢Xu+ Tag + Z ra; | Xij| + Z Lo, | Xi)| 1 —a) >Y;
i=1

z;52>0 ;5 <0

ji=1..,n, la,7e; >0,0=0,....,m

Here the lower and upper values of the response, Y; and Tj, are set to be the
minimum and maximum possible value of Y}, respectively. If there are repeated
observations at level j one may simply take Y; (or Y;) to be the maximum (or
minimum) among the observations at level j. ‘Otherwise, these are appropriately
selected by the experimenter. Hence we can obtain a,b using the optimization
algorithm above at any given level a* € [0,1]. We will use this algorithm to fit
the actual data later.

When f(64,...,6,) is a non-linear function, its FN version (2) is not suitable
for TFN case as the left side b is not in general a TFN even though aq, ..., a, are.
One suggestion to resolve this conflict is to use the first-order Talyor expansion
to approximate b with a TFN ¥'; see [1]. Assume again that f(61,...,0,) is
increasing in the first m < n variables and decreasing in the remaining variables.
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Then the linear (or the first-order Talyor) approximation b’ = (b, Iy, 73) is given
by

n

_ P < % ST < <) SIS o ) SN )
b_f(al,...,an), Iy = 89¢lai i:;H 892‘7.(1“ Tb—i:1 aei’l“ai Z 801-[‘“ (8)

i=m+1

For the linear programming in the fuzzy contexts, refer to, for example, [5] and

[6].
3. Claim reserving method: Traditional crisp approach

In this section we introduce the concept to insurance claim reserving using
the traditional crisp approach that is based on the regression analysis.

3.1. Background. For general insurance business, contracts, insurance con-
tracts may have a long period to settle claims due to, e.g., legal processes. For
example, consider the accidents occurred in 2013. For these accidents, the in-
surer makes claim payments not just in 2013, but also in the subsequent years
2014, 2015, and so on. Hence the insurance premium collected in 2013 must
be large enough to cover the claims arisen from multi-years from 2013. In our
example, the claim payment made in each year (2013, 2014, ...) is called the
incremental loss belonging to accident year 2013, and each year after 2013 is
termed the development year. Because of this time lag effect, one would ex-
pect the incremental loss eventually decreases over time (development years),
converging to zero.

Clearly, the accident year, which refers to the origin time of a given loss, is
different from the calendar year, the usual year we use everyday. It is a standard
practice that the total claim payments made in any calendar year are split and
attributed to each accident year. For example, the total claim payments made
in calendar year 2013 covers not just the claims occurred in the current accident
year 2013, but also claims belonging to past accident years 2012, 2011, 2010,
and so on. Understanding how much proportion of the current calendar year
payment belongs to each accident year is important for the insurer as it provides
the basis of the premium for insurance contracts as aforementioned.

Due to this complication, the historical insurance claim data is typically pre-
sented in a so-called run-off triangle looking like Table 1, which is an actual
data retrieved from [4] (Chapter 10). Each row represents the accident year and
each columns stands for the development year (period). In the table, C; ; is the
incremental loss payment made in development year j originated from accident
year 1. Consequently i+ j = n is the calendar year where Cj ; is made, and thus
> itj=n Cij, (Vi, j) stands for the total payments of the insurer in calendar year
n. For notational simplicity, it is customary for 7 to take values 1,...,n so that
1 = 1 corresponds to the initial accident year reported in data, and i = n to the
latest calendar year observed. The empty elements in the table are future loss
values to be predicted. The main task of run-off triangle analysis insurance claim
reserving is to fill the table with a suitably predicted numbers from a model.
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TABLE 1. Run-off table of incremental loss C; ; data

Development yr (7)
Accid yr (i) 1 2 3 4 5 6
101 153 52 17 14 3
99 121 76 32 10 3
110 182 80 20 21 2
160 197 82 38 19
161 254 85 46

185 201 &6

178 261

168

— (=]
1| Co

0 O Ui Wi -

TABLE 2. Run-off table of cumulative loss Z; ; data

Development yr (7)
Accid yr (i) || 1 2 3 4 5 6 7 8

101 254 306 323 337 340 344 345
99 220 296 328 338 341 342

110 292 372 392 413 415

160 357 439 477 496

161 415 500 546

185 386 472

178 439

168

0O O U W N+

In addition to the incremental loss C; ;, the standard claim reserving requires
several related quantities:

e The cumulative loss:
J
Zi,j = ZC’M, 7, = 1,...,71; j: 1,17._.771_2' (9)
k=1

The run-off table of Z; ; for the data is presented in Table 2
e The link ratio:
_ Zij+
Tij = Zi,j )
Note that r; ; > 1 always, and eventually converges to 1 as j gets larger
e If multiplied successively, the link ratio gives the so-called future projec-
tion rate. We define the future projection rate regarding accident year 4
from the development period j to period s, with j < s, as

s—1
() _ o _ Zis
fis = H Tih Zi
h=j »J

i=1,.on—1;j=1,...n—i—1 (10)

(11)
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Often parametric models for C; ; are selected so that the right side of
(11) is independent of ¢; this is the case when C; ; has a multiplicative
term involving ¢ only.

3.2. Finding past claim trend using ANCOVA.

3.2.1. Modeling claim trend with regression. In order to predict the future
claim we first need to find the past claim trend. Traditionally insurers used the
past values of C; ;, Z; j or r; ; to model the past claim trend. Various parametric
models have been suggested in the literature. Some use r; ; values to model the
past claim trend, while others use C; ; or Z; ;; see, e.g., [2] for a survey. In [§]
the log-transformed link ratio is regressed on the development year, ignoring the
calendar year effect, to yield a simple linear FR, the idea motivated from the
crisp approach of [9]. That is, the regression equation

log(r; —1) =a+blog(j + 1) (12)

is analyzed using the OLS.

In the present article, we consider a more general parametric model called the
Hoerl curve, as discussed in [2], [11] and [4] (Chapter 10). In the Hoerl curve
the incremental loss, rather than the link ratio, is modeled directly:

Ci,j = exp(c+ o;) exp(Blog j +7j) (13)
After taking logarithm on both sides, one arrives at the following linear equation
log(Ci,j) = ¢+ a; + Blog(j) +J (14)

If perturbation terms are added, (14) can be analyzed in the linear regression
framework with suitably estimated parameters for the mean responses. From
the regression perspective, the Hoerl curve after log-transform (14) has several
advantages over the Sherman’s model (12) considered in [8]. First, the Hoerl
curve is more flexible as it allows two explanatory variables, leading to a multi-
ple linear regression rather than the simple one in [8]. The power of explaining
the response variable therefore should be better in general. Second, unlike the
Sherman’s model, the Hoerl curve takes the calendar year (or cohort) effect into
account. This is a desirable aspect of any claim reserving model as the same
cohort could have a common characteristic shared over time, such as the infla-
tion factor. Overall, the Hoerl curve provides a more realistic parametric model
with additional parameters over the Sherman’s model. The additional param-
eters however change the structure of the regression model, leading to a model
commonly known as the analysis of covariance (ANCOVA) in the statistical
literature.

3.2.2. ANCOVA. In the statistical literature, the ANCOVA essentially blends
the linear regression model and the analysis of variance (ANOVA). The model
considered in ANCOVA is typically a multiple regression analysis in which there
is at least one quantitative and one categorical explanatory variable. Usually the
discrete categorical variable stands for different groups or factors (e.g., different
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types of treatments, genders), and the quantitative variables are control variables
which are included to improve power. Restricting on the case where there is one
categorical variable, and no interaction between the categorical variable and
other m quantitative variables, the regression equation looks like:

Yij=p+7i+a X+ .. +an X[} (15)

where p + 7; stands for the effect of the ith group or treatment in the categorial
variable, and X* is the kth quantitative explanatory variable. The model in
(15) thus relates the response variable with both categorical and quantitative
variables. Note however that the intercept is the only coefficient that varies over
different groups; other coefficients are common for all the groups. This indicates
that after neutralizing the group effect by adjusting the intercept terms, all the
data share the same regression model. An alternative modeling approach in the
presence of the categorial variable is to simply treat it as another explanatory
variable, in which case the standard regression can be carried out with no addi-
tional difficulties. It is noted however that such an approach is different from the
model stated in (15) as, in this case, the coefficient of the categorical variable
extracts the linear trend in the the categorial variable assuming its continuity.
Hence it cannot capture the qualitative distinction among different groups. See
standard statistics texts, e.g., [7], for further details on ANCOVA analyses. In
light of this, we see that the regression equation (14) is a special case of the
model stated in (15), and thus suitable for ANCOVA analysis. In particular, in
(14), index i or the whole intercept term ¢ + «; explains the effect of different
calendar year in the run-off triangle. Other variabilities of the data is explained
by the development year j and its function logj. So, after adjusting the pre-
existing differences in calendar year effect, all claims should evolve in the same
fashion as a function of the development year. Using the standard statistical
package, we obtain the parameters for the working data as

(64 @, ..., ¢ + dg) = (6.163,5.951,6.079, 6.445, 6.542, 6.519, 6.706, 6.442)

B =185624; 4 =—1.31755 (16)

The ANCOVA is a widely used analysis method in statistics but its fuzzy coun-
terpart is rarely studied in the literature. In the next section we propose a fuzzy
ANCOVA method based on the FR of [3], and use it to predict the future claims
and estimate the fair reserves for an insurance portfolio. In the passing, we
provide the estimated parameters of the alternative model where the categori-
cal variable is treated as a explanatory variable. The estimated parameters are
o= 5.931,5 = 1.880,4 = —1.325, and the coefficient for the accident year is
0.0982, which is positive and always leads to a higher log incremental loss for
higher calendar year, contradicting the intercept pattern in (16) where some later
calendar years have smaller intercepts. In the sequel, we focus on the ANCOVA
model only.
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3.3. Predicting future claim evolution. The estimated regression models in
(14) basically smooths the past claim trend. In the insurance claim reserving it is
the convention to assume that the future claim pattern would emerge in a similar
fashion as observed in the past, and thus future claims are projected based on
the estimated regression model. For this, one first needs to back-transform to
recover the original quantities. The link ratio is then, from (10) and the Hoerl
curve (13),

py o= Zhitl _ Sl Cis _ Y4 exp(Blogk + k) (a7)

T Ziy Y Cik =1 exp(Blogk 4 vk)

which simplifies things as this is independent of i. Hence, the future projection
rate (11) takes a simple form without index 4 (so the superscript is omitted):

_ 21 xp(Blogk + k)
> 7—1 exp(Blogk + vk)
The ultimate future cumulative loss Z; ,,, defined as the last column of the run-

off table of Z; ;, is then estimated as the product of the most recent cumulative
loss and future projection factor for the future time horizon:

Zi,n = Zi,n7i+1fn7i+1,n (19)

Finally, the reserve for accident year 4, determined in calendar year n, is defined
as the difference between the ultimate future cumulative loss and the current
cumulative loss

Ri=Zin—Zin—i+1 = Zim—it1fn—it1,n — Zim—it+1 (20)

The reserve is understood most easily using Table 2. Here R; is the difference
between the last column value of row i after the table has been fully filled and
the latest value of the triangle in row i. The total reserve then is simply the sum
of the reserves of all accident years

fj.s (18)

R= Z R; = Z (Zin—it1fr—it1n — Zin—it1) (21)
i=1 i=1
For the numerical data, the crisp reserve results are provided in the top panel
of Table 3, which will be further discussed in Section 4.

4. Claim reserving method using fuzzy regression

4.1. Motivation. We have shown how the classical (crisp) claim reserving ap-
proach uses a linear regression model to smooth past claim data as in (14) and
predict the projection rates. However the assumptions underlying the standard
regression model are criticized on several grounds as briefly mentioned in In-
troduction. Specifically, the error terms added in (14) are neither independent
nor identically distributed. This is because the past claims are unlikely to be
uncorrelated. Also, when the data size is small, as is often the case in insurance
applications, statistical analyses may not give meaning ful conclusions. In this
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section, we now look at the claim reserving with fuzzy regression method as an
alternative solution to overcome the difficulties of the standard approach.

4.2. Fuzzy ANCOVA. Our fuzzy ANCOVA adapts the fuzzy regression
method proposed by [3], of which procedure is described in Section 2.2. As
before we assume that the regression coefficients are fuzzy while the explanatory
variables are crisp. To begin with, we may consider the fuzzy counterpart of
(15):

Vij=f+%+aX]+ ..+ amX]) (22)
which is different from (5), and clearly the FR approach in Section2 is not directly
applicable. To tackle this problem, we first recall that, in the crisp ANCOVA
model (15), the data should share the same regression model after an adjustment
for preexisting differences in nonequivalent groups. Another way to look at this
is to rearrange (22) to get

Yij—fi— % = a1 X} + .+ am X)) (23)
The left side is then the response variable net of the group or treatment effect,
making the right s1de no longer affected by index i. Consequently, we put the
left side Y = Y — i — 74, omitting 4, and can further express (23) as

Vi=a X} + .. +an X (24)

which is equivalent to the FR in (5) without the intercept term. If there are w
different groups (treatments) and n; observations for ¢ = 1,...,w, the index j
runs over j = 1,2,...,% " | n;. As the solution of the FR in (24) can be readily
available from Section 2, the remaining task is to determine the intercept g+ 7;,
for each 7, so that the final FN response variable can be obtained from
Y=Y +a+7 (25)
Essentially the challenge lies in estimating the intercept FN separately, in the
presence of the other FN coefficients in the FR model (5). In theory the intercept
FN [i+7; can vary in their center values as well as the spreads over different . If
we assume however that the categorical variable is a description of a qualitative
type or classes, as is the case for most applications, and thus cannot be fuzzy
by nature, we could argue that both i and 7; be crisp numbers obtained from
the OLS in ANCOVA. We believe this solution is consistent with the spirit of
the ANCOVA because term [i + a; is the only source representing the categorial
variable in the model (22), and this source should not be fuzzy by nature as
it categorizes, e.g., different genders (groups), different types of treatments, or
different calendar years in our case.
To summarize, the estimation procedure of the fuzzy ANCOVA analysis for
(22) is as follows:
Step 1: The cores of fi, 7;, a1, ..., Gy are estimated using the ordinary least
squares (OLS) regression method. The estimated cores are denoted
[, Tiy @1, ..., . Note that i = fi and 7; = 7; for each 1.
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Step 2: Set Y =Yj; — ji — 7;. Note that index ¢ is omitted as its effect
has been corrected. The resulting regression equation is (24), which is
rewritten in the standard way as:

Y/ =a1 X1 + o + @m X

Step 3: The left and right spreads of a,as, ..., a, above are estimated
from the same optimization as described in Section 2 without the inter-
cept, for a given minimum accomplishment level o*.

Step 4: Finally the fuzzy regression for the ith group or treatment is given
by

Y/j :ﬂ+72i+(~11X1j+...+(~lmej (26)
where index j runs over the observations in the ith group.

4.3. Finding past claim trend using fuzzy ANCOVA. We apply the gen-
eral procedures for the FR developed in the previous subsection for the working
data with the fuzzy regression equation of the log Hoerl curve

Yij =&+ a + flog(j) +7j (27)
where ffij = log(C;;). The result of Step 1 has already been done using the
crisp OLS with the estimates given in (16). For Step 2, we set V" =Y;; —¢—&;
and ) 5

Y;' = Blog(j) +7i (28)

In Step 3, for the upper and lower limit of Y;, we naturally set

Y; = n{fz}x{log(C’iJ) —¢— &}
and

Y; = Iréiin{log(C’i,j) —¢— &}y
where i = 1,...,8. At a* = 0.3, we obtain the two TFN parameters:

B =(B,1s,r5) = (1.85624,0.0000, 0.8978)
and
¥ =(¥,1ly,7y) = (—1.31755,0.3286, 0.0268).

From (18) the fuzzy projection rate is given by

. Z‘Ezl exp(Blogk + 7k) )
> =1 exp(Blogk + k)

We note that f;, is a non-linear function of 8 and v (the intercept term ¢ + «;

disappears after canceling out in the ratio), and that the resulting FN f; ; is not
a TFN due to nonlinearity, warranting a linear approximation. In order to use
the first-order Taylor expansion, as described in Section 2, we obtain the partial
derivatives of f; s in (18) as

Ofjs _ 1 {Slkxlk k~jx1kk
i [Zizlexp(ﬁlogk+yk)]2 [kgl og kexp(Blogk + vk)] [kgle p(Blog k + vk)]
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s j
— Z exp(Blogk + vk) - [Z log kexp(Blogk + ’yk)]} (30)
= k=1
and
Ofis ___ ! {[Z k exp(Blog k + k)] - [Zj:exp(ﬁlongrvk)]
v [Eg_exp(Blogk + vk)P =
- Zexp Blog k + ~k) - [Z kexp /Blogk‘+7k)}} (31)
k=1

In addition, one can also show that, for j < s, both of these partial derivatives
are positive. To prove this, we denote g(k) = exp(Blogk + vk), which is always
positive, for notational convenience. Then, from (30),

Of.s _ ! {lxl jxlkk
o5 ST en(Blosk 1 P > “logi exp(Blogi + i) [kgle p(Blogk + k)]

- Z exp(Blogi + i) - [Z log k exp(Blogk + ’yk)}}
i=1 k=1
J

s J
{Zlogzg Z ZQ ZIngQ(k)}
k=1

- [ 1g(k =

S

J
= : (k 2 ZZ(longlogk g(2) g(k)
=19 i=1k=

1
Jj_J s J
= 7{ Z Z logi —logk) g(3) g(k) + Z Z(logi —logk) g(2) g(k)}

i 9B)? Ui i i1 k=1
S J
_— (logi — logk) g(i) g(k) > 0
T Tig (k)} 21;;
The last inequality holds because logi — log k > 0 for all values for k =1, ..., j
andi=j4+1,...,s

Similarly, for (31),

Ofss 1 s
& i, exp(Blogk + 7R {[Z”"pﬂ tog i +79) [ge"p(ﬁ togk +7#)]

- Z exp(Blogi + i) - [Z kexp(Blogk + Wk)]}

- [j%{zigm-zguc) fzgu)-zkg(k)}
:[ ZZ i—k

= i=1 k=1

- s {iiz— + 30 SRt )

k19 i=1 k=1 i=j+1 k=1
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=[ ZZZ— (k) > 0.

i=j+1 k=1
Now keepmg in mind the signs of the partial derivatives, the approximated
TEN, denoted f; ;= (fj,s,1y,.,7s;.), is given by, from (8),
af; af; of;
ly, . = =214 jSl' = LRy
fj,s 8/8 + ,y v rfj,s 8/8
Using the estimated values for each j and s, one can readily calculate all the
future projection rates that can help fill the run-off table.

0
o+ @

4.4. Fuzzy claim reserve. Recall that in the crisp approach, the future cu-
mulative loss Z; 5, s > n — ¢+ 1, was given by
Zis = Zin—it1 X fn_it1,s (33)

In the fuzzy approach, therefore, we would use the linear approximation of the
FN

r
Zi,S = Zi,n—i-‘rl X fn—i—i—l,s = Ziﬂl—i-i—l X (fn—l'-‘rl-,sv lfﬂ,—i+l,s’rf7z—i+1,.e)
= (Zin—it1 fr—ivts) Zin—iv1 lpn_ i1 os Zin—it1 Tfn_ii1.s)

= (Zi,57 lZi,s? rZi,s)’ <34)
which is a TFN. Therefore the fuzzy reserve for accident year i is given by
Ri=Zip—Zin—iv1 = (Zin — Zin—it1, [/ (35)

and the total reserve by
R (i) = 3 - (z o o) Yl z) 30
i—1 i=1 i=1 i=1
For our run-off cumulative claim data (2), we present the fuzzy values (34) of
Z; s in Table 3, and the reserves in Table 4. To look at the trend from the past
we also included the past Z;; values in the top panel of Table 3.
From Table 4 the total fuzzy reserve is given by

R = (R,lg,rr) = (659.79,473.79,618.5),

meaning that the claim reserve for this portfolio is approximately 659.79 but
there may be deviation below (above) no greater than 473.79 (618.5). We can
draw similar conclusion for other choices of a* with smaller values leading to
smaller spreads for both cumulative claims and the reserves.

5. Concluding remarks

In non-life insurance applications determining the evolution of the future
claims is an important task to calculate the reserve which must be set aside
to protect the insurer from future losses. The traditional claim reserving ap-
proach in the insurance literature typically uses a parametric regression model
to estimte the future claim amounts and thus obtain the reserve. However this
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TABLE 3. Predicted fuzzy value of cumulative loss Z;;: Center,
left and right spreads

Development yr (7)
Accid yr () 1 2 3 4 5 6 7 8
1 101 254 306 323 337 340 344 345
2 99 220 296 328 338 341 342 342.55
3 110 292 372 392 413 415 416.95 417.61
Zij 4 160 357 439 477 496 502.61 504.97 505.78
5 161 415 500 546 566.09 573.64 576.33 577.25
6 185 386 472 519.14 538.24 545.42 547.97 548.85
7 178 439 561.84 617.95 640.69 649.23 652.27 653.32
8 168 330.89 423.48 465.77 482.91 489.34 491.64 492.43
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1.04
3 0 0 0 0 0 0 3.09 4.36
lZij 4 0 0 0 0 0 8.42 12.19 13.76
5 0 0 0 0 19.67 29.54 33.95 35.76
6 0 0 0 33.74 53.69 63.54 67.89 69.67
7 0 0 60.86 107.1 133.3 14596 151.47 153.7
8 0 53.52 114.37 156.07 178.59 189.17 193.69 195.5
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0.79
3 0 0 0 0 0 0 2.54 3.5
TZij 4 0 0 0 0 0 7.62 10.73 11.92
5 0 0 0 0 20.05 29.02 32.66 34.05
6 0 0 0 39.97 60.51 69.59 73.25 74.63
7 0 0 88.49 14491 17294 185.09 189.93 191.74
8 0 105.73 202.02 258.05 284.65 295.87 300.25 301.87

TABLE 4. Fuzzy reserves for each accident year

accid yr (4) R; IR, TR,
1 0 0 0
2 0.55 1.04 0.79
3 2.61 4.36 3.5
4 9.78 13.76 11.92
5 31.25 35.76  34.05
6 76.85  69.67 74.63
7 214.32 153.7 191.74
8 324.43 195.5 301.87

sum 659.79 473.79 618.5

crisp approach is criticized on statistical bases including the violation of the error
assumptions required for regression analyses, and the fuzzy regression method
can serve as an alternative solution. In the present article we extend the fuzzy
claim reserving method of [8] where the simple fuzzy regression is adopted ig-
noring the cohort effect in the claim data. We develop a fuzzy counter part of
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the well-known Hoerl curve which accommodates the cohort effect as well as the
development periods. This task, however, also calls for a fuzzy counterpart of
the analysis of covariance, or ANCOVA, a combination of the linear regression
and the analysis of variance. Our proposed fuzzy ANCOVA is simple to use
and consistent with the statistical ANCOVA. Using an actual insurance claim
data we find the fuzzy Hoerl curve adequately calculates relevant claim reserving
quantities.
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