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ON HERMITE-HADAMARD-TYPE INEQUALITIES FOR
DIFFERENTIABLE QUASI-CONVEX FUNCTIONS ON THE
CO-ORDINATES'

FEIXIANG CHEN

ABSTRACT. In this paper, a new lemma is established and several new
inequalities for differentiable co-ordinated quasi-convex functions in two
variables which are related to the left-hand side of Hermite-Hadamard type
inequality for co-ordinated quasi-convex functions in two variables are ob-
tained.
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1. Introduction

Let f: 1 CR — R be a convex function and a,b € I with a < b, we have the
following double inequality

a+b 1 b fa)+ £(b)
< < = 1
1(*57) < 5= [ roa< 1 )
This remarkable result is well known in the literature as the Hermite-Hadamard
inequality for convex mapping.

Definition 1.1. A function f : [a,b] — R is said to be quasi-convex on [a, b], if

fOz + (1= N)y) < max{f(z), f(y)}
holds for all z,y € [a,b] and A € [0,1].

Clearly, any convex function is a quasi-convex function, but the converse is
not generally true.

In [4], S. S. Dragomir defined convex functions on the co-ordinates as follow-
ing:
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Let us consider the bidimensional interval A := [a, b] x [¢,d] in R? with a < b
and ¢ < d, a mapping f : A — R is said to be convex on A if the inequality

holds for all (z,y), (z,w) € A and A € [0,1].
A function f: A — R is said to be co-ordinated convex on A if the partial

mappings fy : [a,0] = R, fy(u) = f(u,y) and fy : [c,d] = R, fo(v) = f(z,v) are
convex for all y € [¢,d] and = € [a, b)].
A formal definition for co-ordinated convex functions may be stated as follows:

Definition 1.2. A function f: A — R is said to be convex on co-ordinates on
A if the inequality
JOz+ (1= Nz ty + (1 —t)w) < Atf(x,y) + A1 —t) f(z, w)
+ 1 =Ntf(zy) + A=) = A)f(zw)
holds for all (z,v), (#,v), (z,w), (z2,w) € A and ¢, A € [0,1].

S. S. Dragomir in [4] established the following Hadamard-type inequalities for
co-ordinated convex functions in a rectangle from the plane R2.

Theorem 1.3. Suppose that f : A = [a,b] X [¢,d] = R is convex on the co-
ordinates on A. Then one has the inequalitieS'

b c+d
f(a+, )S f(z,y)dydz
2 2 b—a) —c// 2)

< f(a, c)+f(a d) + f(b,c) + f(b, d)
- 4
The concept of quasi-convex function on the co-ordinates was introduced by
Ozdemir et al. in ([9], 2012).
Let us consider the bidimensional interval A := [a, b] x [¢,d] in R? with a < b
and ¢ < d, a mapping f : A — R is said to be a quasi-convex function on A if
the inequality

f()‘x + (1 - )‘)Za )‘y + (1 - )‘)w) < max{f(x, y)v f(za w)}

holds for all (z,y), (z,w) € A and X € [0,1].

A function f : A — R is said to be quasi-convex functions on the co-ordinates
if the partial mappings fy, : [a,b] = R, fy(uv) = f(u,y) and f; : [¢,d] — R,
fz(v) = f(z,v) are quasi-convex for all y € [¢,d] and x € [a, ]].

A formal definition of quasi-convex functions on the co-ordinates as follows:

Definition 1.4. A function f: A — R is said to be a quasi-convex function on
the co-ordinates on A if the inequality

f()‘x + (1 - >‘)27ty + (1 - t)w) < max{f(x,y)j(x,w), f(z7y), f(z7w)}
holds for all (x,y), (z,v), (z,w), (z,w) € A with t, X € [0, 1].

n ([10], 2012), M. Z. Sarikaya et al. established some inequalities for co-
ordinated convex functions based on the following lemma.
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Lemma 1.5. Let f : A C R?2 — R be a partial differentiable mapping on
2

A = [a,b] x [e,d] in R? with a < b and ¢ < d. If aau@fv € L(A), then the

following equality holds:

fla,c)+ f(a,d) + f(b,c) + f(b,d) 1 b
1 + (b_a)(d_c)/a / [z, y)dydx

b d
-3 [b_la / () + Far e+ / Flay) + £, y)]dy}

Oudv

In ([7], 2012), M. E. Ozdemir et al. established the following inequalities for
quasi-convex functions on the co-ordinates based on Lemma 1.5.

_w ' ' — 2u — 20 82f ua — Uu)b,vc — v uav
_ ! /0/0(1 2u)(1 — 20)———(ua + (1 — u)b, ve + (1 — v)d)dudv.

Theorem 1.6. Let f : A C R2 — R be a partial differentiable mapping on
2

A = [a,b] x [c,d] in R? with a < b and ¢ < d. If‘ o

Oudv

function on the co-ordinates on A, then the following inequality holds:

f(a,c) + f(a,d) + f(b,c) + f(b,d) ) o
! " (b—a)(d—c)/a /C f(z,y)dydx — A

1S G Quasi-conver

(b—a)(d—c¢) >’f >’f >’f > f
= mmax{ auafu(“’ )| Oudv (a,d)], Audv (.}, 8u8v(b’ d)’}’
where
b d
A= 5l [ o+ seane+ o [l + o).

Theorem 1.7. Let f : A C R2 — R be a partial differentiable mapping on
0%f |4
A = [a,b] X [e,d] in R?> with a < b and ¢ < d. If ‘aTﬁfv) is a quasi-convex

function on the co-ordinates on A and q > 1, then:

fla,c) + f(a,d) I f(b,c) + f(b,d) N — a)l(d— ~ /ab /Cd Fay)dydz — A
< O Lo (g0 e a0 0l )
Ap+1)7 udv udv udv udv
where A is defined in Theorem 1.6 and % + é =1.

Some new integral inequalities that are related to the Hermite-Hadamard type
for co-ordinated convex functions are also established by many authors.

In ([1], [2], 2008), M. Alomari and M. Darus defined co-ordinated s-convex
functions and proved some inequalities based on this definition. In ([5], 2009),
M. A. Latif and M. Alomari defined co-ordinated h-convex functions and proved
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some inequalities based on this definition. In ([3], 2009), Alomari et al. estab-
lished some Hadamard-type inequalities for coordinated log-convex functions.

In ([6], 2012), M. A. Latif and S. S. Dragomir obtained some new Hadamard
type inequalities for differentiable co-ordinated convex and concave functions
in two variables which are related to the left-hand side of Hermite-Hadamard
type inequality for co-ordinated convex functions in two variables based on the
following lemma:

Lemma 1.8. Let f : A C R?2 — R be a partial differentiable mapping on

52
A = [a,b] x [c,d] in R? with a < b and ¢ < d. If f € L(A), then the
following equalzty holds:

b—a) —c//fxydyd$+f(a;b’c+d)
ﬁﬂlf@fiﬁw ()

:(b—a)(d—c)/o /O K(u,v)a av(ua—l-(1—u)b,vc+(1—v)d)dudv,

where
uv, (u,v) € {0, %} X {0’ %}
1
Ky = M0 woelog] (]
(u—1)v, (u,v) € (%71} X {07 5}
oo e (< (1]

Theorem 1.9 ([6]). Let f : A C R? — R be a partial differentiable mapping

2
on A := [a,b] x [c,d] in R? witha < b and ¢ < d. If 3 8f
udv
co-ordinates on A, then the following inequality holds:

(b—a)l(d—c) Lb/cdf(x’y)dydx+f<a;b’C;d) -4

O*f
_(b-a)d- )<‘auav( ’+‘3u8v ‘+‘auav ‘—'—‘Buavbd)‘)’

is convex on the

16 4

where

1 b c+d 1 d sa+b
= d ( )dy.
b—a/af(x’ 2)I+d—c/cf 2 Y)W
Theorem 1.10 ([6]). Let f : A C R? — R be a partial differentiable mapping

on A := la,b] x [c,d] in R?

is convexr on the
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1 1
co-ordinates on A and p, ¢ > 1, — + — = 1, then the following inequality holds:
p q

(b_a%/b/df(x,y)dydx—&-f(a—kb,c+d)—A

(b—a)(d—c <’8u8v C‘ +‘8u8va ‘ +‘8uav ©) bd)q>q
T o4p+1)r 4 ’

where A is as given in Theorem 1.9.

For recent results and generalizations concerning Hermite-Hadamard type
inequality for differentiable co-ordinated convex functions see ([8], 2012) and
the references given therein.

In this paper, we establish several new inequalities for differentiable co-ordinated
quasi-convex functions in two variables which are related to the left-hand side
of Hermite-Hadamard type inequality for co-ordinated quasi-convex functions in
two variables.

2. Main results
To establishing our results, we need the following lemma.
Lemma 2.1. Let f : A C R? — R be a partial diﬁerentiable mapping on

A := [a,b] x [c,d] in R? with a < b and c < d. If 625 5 € L(A), then the
following equality holds:

(b_a)l(d_c)/b/df(xay)dydx-i-f(a;bac;d)

B bia/bf(x’c+d>dx_ dic/df(a;—b’y)dy

(b—a / / Muanaz(UH( — w)b, ve + (1 — v)d)dudv,
where
u?v?, (u,v) € {0, %} X {O, %}
B u?(v — 1), (u,v) € {O, f} X (1, 1}
M) = (u—1)%02, (u,v) € (%,21] X [(i %}
(=120 1%, (uv) € (5,1] x (%1}

Proof. Since

1 1 a4f
/0 /0 M (u,v) ERT (ua + (1 — u)b,ve+ (1 — v)d)dudv
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/ / 23 S (ua + (1 — w)b, ve + (1 — v)d)dudv

+ /0 / u?(v — 1)28u248fUQ (ua + (1 — u)b,ve + (1 — v)d)dudv

+ /1 /é(u —1)%? a;af 5 (ua + (1 = u)b,ve + (1 — v)d)dudv

// (u—1)? )23 252(ua—|—(1—u)b,vc—|—(1—v)d)dudv.

Thus, by integration by parts, it follows that

/ / w2 u28 5 (ua + (1 —u)b,ve + (1 — v)d)dudv

[SIE

0

2 1o
/0 UZ{UQC_dauzgv(ua—l—(l—u)b,vc+(1—v)d)

c—d Ou2dv

1
11 [z, 8
/2 of (ua+(1—u)b7c—i2_d)du
0

! /5 20 Of (ua + (1 — uw)b,ve+ (1 — v)d)dv}du
0

T dc—d 05y
pi / / 8 28 (ua + (1 — u)b,vc + (1 — v)d)dvdu
c— u?Ov
3 Pf c+d
40_ d/o EER (ua + (1 — u)b, )du

2

c—d a—boudv 0

! /5 2U{u2 Lo (ua + (1 — u)b,vc + (1 —v)d)
0

[ |
- 202u————(ua + (1 — w)b,ve + (1 — v)d)du pdv
0

a — b Oudv
c+d
4c—d u28v (ua + (1 — u)b, 5 )du
2 9%f a+b
2c—da—b/0 auﬁv( 2 yvet (1= v)d)dv

ua + (1 —w)b,ve + (1 — v)d)dudv.

4 3 orr o 92f
+(a—b)(c—d)/0 /0 “Uauau(

Similarly, we can get
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1 1 4
2 0

/0 \ u?(v — 1)2675;2@@ + (1 —u)b,vc+ (1 — v)d)dudv
1 1 [z , &Bf c+d

» (ua + (1 — u)b, 5 )du

1
11 1 /(U_l)azf(aerle_v)d)dv

- 2c¢c—da-—b Oudv: 2
4 % 1 82f
TN -1 1— 1
* (a—b)(c— / / u(v )auav(ua+( u)b,vd + (1 — v)c)dudv,

Do
3f c+d
4cd/é(u 1)2 54290 (ua + (1 — u)b, 5 )du

1
11 1 2 0%f a+b
S —v)e)d
+2 —da—2»> U@u@v( 2 yvd + (1= v)c)dv

Sy L T

// (u —1)%0? ' (ua + (1 — u)b,ve + (1 — v)d)dudv

// u—1)2 v—l)a28f2(ua+(1—u)b,uc+(1—v)d)dudv

65f c+d
_ 2 B
B 4c—d/ (u—1)"5 55, (ua + (1 —u)b, )du

1 1 1 1 82f a+b

5@@—[)/ (v_l)auﬁ (Tvvd‘i‘(l—v)c)dv

+ / / 1) _ 1 2f (ua + (1 — U)b vd + (]_ — 'U)C)dudv.
(@a—=b)(c—d 8u6v )

Now

1 1 64f
/ / M (u, v)m(ua + (1 —u)b,vc+ (1 —v)d)dudv

4 LAV E
_afbcf //uv

+ (a —b)(c— / / u(v—1) 3u811 (ua + (1 =w)b,vd + (1 — v)c)dudv

(ua + (1 —w)b,ve+ (1 — v)d)dudv
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+a40/1/§<“

+ (a—b)(c— / / (v— 1)8856{] (ua + (1 —u)b,vd + (1 — v)c)dudv.

ng (ua + (1 — u)b,vd + (1 — v)c)dudv

b—a)?(d—c)?
Multiplying the both sides by %

completes the proof. O

and using Lemma 1.8, which

Theorem 2.2. Let f : A C R2 — R be a partial differentiable mapping on

4
A = [a,b] x [c,d] in R? with a < b and ¢ < d. If ‘%‘ is a quasi-conver

function on the co-ordinates on A, then the following inequality holds:

707_& _C//f(zydydx+f(a+b C;d)—A
< (b—a)24(2d— )2 max{’awafu (a,d), ‘au% (b,0), ‘&M S (b, d)]}
= 1 b ( c+d>d n 1 d (a+b )d

_b—a/afx’ 2 * d—c/cf 2 Y)W
Proof. From Lemma 2.1, we obtain

(b_a)l(d_c)/ab/cdf(%y)dyderf(a;b,C;d)—A

where

b— 2 d— 2 1 1 4
< (‘04(0)/0 /0 M (u,v) quﬂ(ua + (1= wb,ve + (1= 0)d)|dudv.
orf . . .
Because ‘W‘ is quasi-convex on the co-ordinates on A, then one has
1 /b/df( )dd+f(a+b c—i—d)_A
(b—a)(d—rc) ny)ayer 2 72
(b—a)(d=c)” Y2(d —¢) / /
= M{u, v) x max ‘8u28v2 ‘) ‘a 281;2(“ 9]
o f
8u28v2 281)2 (®, d)‘ }dudv
_ (- a0 'y 'f 'y
- 4 e ‘3u28v2 ‘ ‘amaqﬂ (a.d)], &), ®, d)‘
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1 1
/ / M (u,v)dudv
o Jo

_(b-aPd-o? {’864f )

(a,9)],

242 u2v2

On the other hand, we have

1o 1
M -
/0 /0 (u, v)dudv i

The proof is completed. U

4
P e

The corresponding version for powers of the absolute value of the fourth
partial derivative is incorporated in the following theorems.

Theorem 2.3. Let f : A C R2 = R be a partial dzﬁerentiable mapping on
A = [a,b] X [e,d] in R? with a < b and ¢ < d. If‘a

function on the co-ordinates on A and q > 1, then:

m/ / fxydydg“rf(a-i-b c;d>—A

(b—a)?d=c( 1 3
= 64 <2p+1)

1S G quasi-convex

200 2‘

=

«(moc{ gt ol + el + a0 + patal })

1 1
where A is defined in Theorem 8.1 and — + — = 1.
p q

Proof. From Lemma 2.1, we obtain

(ba)l(dc)/ab/cdf(%y)dydwrf(a;b,c;d) —A

(b—a)?(d—c)? Lot
< S [ e

By using the well known Hdlder’s inequality for double integrals, then one has

(b_a)l(d_c)/ab/cdf(x,y)dydz—l-f(a;b,C;d) —A

(b—a d—c) (// uv”dudv)p
X (/Ol/ollfha:gw(uaJr(lu)b,chr(lfu)d)’qdudv)

(ua + (1 — u)b,ve+ (1 — v)d)‘dudv.

Q=
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Because is quasi-convex on the co-ordinates on A, then one has

(b,d)’q}.

q
e
/ / ‘auzan ua + (1 —u)b,ve+ (1 — v)d)‘qdudv

< max{\wéfm(“ °)

We note that

/ / (u, v)]Pdudv = / / u?P?P dudv +/ / 2pdudv
/ / u)*? 2pdudv+/ / — ) dudv

4p+2
(2p +1)2 (2) '
Hence, it follows that

W//f(iﬁydydx.;_f(a-ﬁ-b C—;d)—A

2

R CEL R Y

———(a,d ———(b,¢)

= 64 2p+1
1
84 f q q
) <max{‘8u28v2(“ O+ |z @] + gz o'+ Gz }> '
So, the proof is completed. O

Theorem 2.4. Let f : A C R2 — R be a partial dzﬁerentiable mapping on
A := [a,b] X [e,d] in R? with a < b and ¢ < d. If‘(‘)

function on the co-ordinates on A and g > 1, then:

m/ab/cdf(m,y)dydxq-f(a;‘b’c-|2-d) 4

(b—a)*(d—c)?
242

*f e *f
Xmax{‘w(ac (a,d (bc 281)2(1) d) ,
where A is defined in Theorem 3.1.

1S a quasi-convex

200 2‘

<

Proof. From Lemma 2.1, we obtain

(ba)l(dc)/ab/cdf(wyy)dydfwrf(a;b,C;d) —A

R T

IN

ot f
2o vat (L —ubve+ (1~ U)d)‘dudv,
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By using the well known power mean inequality for double integrals, then one

has
(b—a)l(d—c)/ab/cdf(xvy)dydx+f<a‘2"b7C;d)_A
- W(/Ol/olM(u,v)dudv>l_é
([ Lt

Dutov2
15 quasi-convex on the co-ordinates on A, then one has

Q=

(ua + (1 —u)b,ve+ (1 — v)d)‘qdudv>

Because

s
/o / \mwaﬂl—“)b»m“—”>d>\qd“d“

Ot f
SmaX{\auQavzW

Thus, it follows that

m/:/cdf(x,y)dyderf(“;b’C—fZ—d) 4

gW(//M@MMQ (//Muvdudv)

o'f
X max {‘W(a C (
Thus, we get the following inequality

m/ab/cdf(x:y)dyderf(a;b,C';'d> »

(b—a)*(d—c)?

St (bo) (b, d)

+‘a2a2

+‘a2a2(

q}.

0" + |- @, a)|"

<

242
ot f q
* max{‘auzalﬂ )’ + ’8u28v2 )‘ + ‘8u28v2 ’ )’ + ‘6u28v2 ®, d)} }’
which complete the proof. O
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