DOI QR코드

DOI QR Code

팜지방산 디스틸레이트의 무촉매 에스테르화 반응특성 연구

An Analysis of Characteristics for the Non-catalytic Esterification of Palm Fatty Acid Distillate (PFAD)

  • 투고 : 2013.12.23
  • 심사 : 2014.02.20
  • 발행 : 2014.06.01

초록

본 연구에서는 고온($230{\sim}290^{\circ}C$)의 무촉매 조건에서 이루어지는 팜 지방산 디스틸레이트(PFAD)의 에스테르화 반응에 대해 수학적 모델링을 통해 그 반응 특성을 분석하였다. '무촉매 에스테르화 반응'에 대해 균일계(homogeneous) 2차 가역 반응으로 가정하였고 액상 내에서 동시적, 경쟁적으로 발생하고 있는 물과 메탄올의 증발과 반응을 모두 고려하기 위해 '반응 유효 인자'(reaction effectiveness factor, ${\eta}$)를 도입하였다. 각 반응물 및 생성물의 농도에 대하여 실험을 통해 측정한 값과 반응모델에 의한 예측값 사이의 차이를 최소화하는 반응속도 상수와 물질전달 계수를 구하기 위해 비선형 계획법(nonlinear programming)을 수행하였다. 이를 통해 얻은 반응의 활성화 에너지는 43.98 kJ/mol이다.

In this work, the reaction characteristics for the non-catalytic esterification of palm fatty acid distillate were analyzed. The esterification reaction was assumed as the pseudo homogeneous $2^{nd}$ order reversible reaction and 'reaction effectiveness factor (${\eta}$)' was used to take accounts into evaporation and reaction of water and methanol, which take place simultaneously in the liquid phase. The nonlinear programming was used to derive appropriate kinetic parameters, the reaction rate constant and mass transfer coefficient, minimizing the error between experimental data and the numerical values. Based on these parameters, the apparent activation energy was calculated to be 43.98 kJ/mol.

키워드

참고문헌

  1. Anton, A. K., "Novel Process for Biodiesel by Reactive Absorption," Sep. Purif. Technol., 69, 280-287(2009). https://doi.org/10.1016/j.seppur.2009.08.004
  2. Santacesaria, E., Tesser, R., Serio, M. D., Guida, M., Gaetano, D., Agreda, A. G. and Cammarota, F., "Comparison of Different Reactor Configurations for the Reduction of Free Acidity in Raw Materials for Biodiesel Production," Ind. Eng. Chem. Res., 46, 8355-8362(2007). https://doi.org/10.1021/ie061596n
  3. Joelianingsih, Nabetani, H., Hagiwara, S., Sagara, Y., Soerawidjaya, T. H., Tambunan, A. H. and Abdullah, K., "Performance of a Bubble Column Reactor for the Non-Catalytic Methyl Esterification of Free Fatty Acids at Atmospheric Pressure," J. Chem. Eng. Jpn., 40(9), 780-785(2007). https://doi.org/10.1252/jcej.07WE057
  4. Bipro, R. D. and Kawnish, K., "Excess Methanol Recovery in Biodiesel Production Process Using a Distillation Column: a Simulation Study," Chem. Eng. Res. Bull., 13, 55-60(2009).
  5. Zullaikah, S., Lai, C. C., Vali, S. R. and Ju, Y. H., "A Two-step Acid-catalyzed Process for the Production of Biodiesel from Rice Bran Oil," Bioresour. Technol., 96, 1889-1896(2005). https://doi.org/10.1016/j.biortech.2005.01.028
  6. Gerpan. J. V., "Biodiesel Processing and Production," Fuel Process. Technol., 86, 1097-1107(2005). https://doi.org/10.1016/j.fuproc.2004.11.005
  7. Satriana and Supardan, M. D., "Kinetic Study of Esterification of Free Fatty Acid in Low Grade Crude Palm Oil Using Sulfuric Acid," Asian J. Chem. Eng., 8(1), 1-8(2008).
  8. Cho, H. J., Kim, S. H., Hong, S. W. and Yeo, Y. K., "A Single Step Non-catalytic Esterification of Palm Fatty Acid Distillate (PFAD) for Biodiesel Production," Fuel, 93, 373-380(2012). https://doi.org/10.1016/j.fuel.2011.08.063
  9. Kiss, A. A., Omota, F., Dimian, A. C. and Rothenberg, G., "The Heterogeneous Advantage: Biodiesel by Catalytic Reactive Distillation," Top. Catal., 40, 141-150(2006). https://doi.org/10.1007/s11244-006-0116-4
  10. Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakait, K., Attanatho, L. and Jenvanitpanjakul, P., "Transesterification of Crude Palm Kernel Oil and Crude Coconut Oil by Different Solid Catalysts," Chem. Eng. J., 116, 61-66(2006). https://doi.org/10.1016/j.cej.2005.09.025
  11. Lopez, D. E., Goodwin, J. G., Bruce, D. A. and Lotero, E., "Transesterification of Triacetin with Methanol on Solid Acid and Base Catalysts," Appl. Catal. A, 295, 97-105(2005). https://doi.org/10.1016/j.apcata.2005.07.055
  12. Lopez, D. E., Goodwin, J. G., Bruce, D. A. and Furuta, S., "Esterification and Transesterification Using Modified-zirconia Catalysts," Appl. Catal. A, 339, 76-83(2008). https://doi.org/10.1016/j.apcata.2008.01.009
  13. Kawashima, A, Matsubara, K. and Honda, K., "Acceleration of Catalytic Activity of Calcium Oxide for Biodiesel Production," Bioresour. Technol., 100, 696-700(2009). https://doi.org/10.1016/j.biortech.2008.06.049
  14. Marchetti, J. M., Miguel, V. U. and Errazu, A. F., "Heterogeneous Esterification of Oil with High Amounts of Free Fatty Acids," Fuel, 86, 906-910(2007). https://doi.org/10.1016/j.fuel.2006.09.006
  15. Wang, Y, Ou, S, Liu, P. and Zhang, Z., "Preparation of Biodiesel from Waste Cooking Oil via Two-step Catalyzed Process," Energy Convers. Manage., 48, 184-188(2007). https://doi.org/10.1016/j.enconman.2006.04.016
  16. Petchmala, A., Laosiripojana, N., Jongsomjit, B., Goto, M., Panpranot, J., Mekasuwandumrong, O. and Shotipruk, A., "Transesterification of Palm Oil and Esterification of Palm Fatty Acid in Near-and Super-critical Methanol with SO4-$ZrO_2$ Catalysts," Fuel, 89(9), 2387-2392(2010). https://doi.org/10.1016/j.fuel.2010.04.010
  17. Hong, S. W., Cho, H. J., Kim, S. H. and Yeo, Y. K., "Modeling of the Non-catalytic Semi-batch Esterification of Palm Fatty Acid Distillate (PFAD)," Korean J. Chem. Eng., 29(1), 18-24(2012). https://doi.org/10.1007/s11814-011-0132-3
  18. Choi, H. K., Kim, S. D., Yoo, J. H., Chun, D. H., Lim, J. H., Rhim, Y. J. and Lee, S. H., "An Economic Analysis of Solvent Extraction Process under Mild Condition for Production of Ashfree Coal," Korean Chem. Eng. Res., 50(3), 449-454(2012). https://doi.org/10.9713/kcer.2012.50.3.449

피인용 문헌

  1. Optimization of Fatty Acids Production from Lard via Subcritical Water-Mediated Hydrolysis vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.199
  2. 효소 촉매를 이용한 고산가 폐유지 유래 바이오디젤 합성 vol.35, pp.4, 2018, https://doi.org/10.12925/jkocs.2018.35.4.1048