DOI QR코드

DOI QR Code

Sterilization Effect of the Ion-exchanger Filter Using by Radiation Graft Polymerization

방사선 그라프트 중합법을 이용한 이온교환 필터의 살균효과

  • Kim, Ye-Jin (Plasma Bio Research Team, National Fusion Research Institute) ;
  • Hong, Yong-Cheol (Plasma Bio Research Team, National Fusion Research Institute) ;
  • Kim, Min (Department of Safety Engineering, Dongguk University)
  • Received : 2013.12.03
  • Accepted : 2014.01.23
  • Published : 2014.06.01

Abstract

We studied the pasteurization effect of the microorganism involved in the water, using ion-exchanging filter made of the Radiation Induced Grafted Polymerization. This ion-exchanging filter is made by the graft polymerization of GMA, after irradiation of electron beam to the non-woven filter. Then, we made the ion-exchanging filter (EtA, DEA, SS) applying ion-exchanging base to the GMA filter. As a result, the density of the ion-exchanging base is shown as 2.38 mol/kg in case of EtA, 1.79 mol/kg in case of DEA and 0.75 mol/kg in case of SS. Through this filter made by this method, we measured the pasteurization power of E. coli. We found very high elimination rate such as log 4.65 in case of SS-dial filter, which is higher as 3.00 times in comparison with EtA, and 1.10 times in comparison with DEA. This data show the result is very excellent comparing with 3,000 CFU/ml. of city water treatment basis.

방사선 그라프트 중합에 의한 이온교환필터를 이용하여 물에 포함된 미생물의 살균 효과를 연구하였다. 이온교환필터는 부직포 필터에 전자선을 조사한 후, GMA를 그라프트 중합시켰으며, 이 GMA 필터에 이온교환기를 도입시켜 이온교환필터(EtA, DEA, SS)를 도입하였다. 그 결과 이온교환기 밀도는 EtA의 경우 2.38 mol/kg, DEA는 1.79 mol/kg, SS는 0.75 mol/kg으로 나타났다. 이렇게 제작된 필터를 통해 E. coli의 살균력을 측정하였다. SS-diol 필터의 경우 log 4.65로 EtA, DEA에 비해 각각 약 3.00배, 1.10배 높은 제거율이 나타났다. 이는 상수처리 기준 3000 CFU/ml와 비교하여 우수한 결과를 나타냈음을 알 수 있었다.

Keywords

References

  1. Iwasaki, T., Slade, J. J. and Stanley, W. E., "Some Notes on Sand Filtration," J. American Water Works Association, 29(10), 1591-1602(1964).
  2. Huisman, L. and Wood, W. E., "Slow Sand Filtration," World Health Organization, GENEVA, Switzerland (1974).
  3. Sathasivan, A. and Ohgaki, S., "Application of New Bacterial Regrowth Potential Method for Water Distribution System-a Clear Evidence of Phosphorus Limitation," Water Res., 33(1), 137-144 (1999). https://doi.org/10.1016/S0043-1354(98)00158-4
  4. Golob, V., Vinder, A. and Simonie, M., "Efficiency of the Coagulation/flocculation Method for the Treatment of Dyebath Effluents," Dyes. Pigm., 67(2), 93-97(2005). https://doi.org/10.1016/j.dyepig.2004.11.003
  5. Yilmaz, A. E., Boncukcuoglu, R., Bayar, S., Fil, B. A. and Kocakerim, M. M., "Boron Removal by Means of Chemical Precipitation with Calcium Hydroxide and Calcium Borate Formation," Korean J. of Chem. Eng., 29(10), 1382-1387(2012). https://doi.org/10.1007/s11814-012-0040-1
  6. Junli, H., Li, W., Nenqi, R., Li, L. X., Fun, S. R. and Guanle, Y., "Disinfection Effect of Chlorine Dioxide on Viruses, Algae and Animal Planktons in Water," Water Res., 31(3), 455-460(1997). https://doi.org/10.1016/S0043-1354(96)00276-X
  7. Huang, J., Wang, L., Ren, N. and Ma, F., "Disinfection Effect of Chlorine Dioxide on Bacteria in Water," Water Res., 31(3), 607-613(1997). https://doi.org/10.1016/S0043-1354(96)00275-8
  8. Morino, H., Fukuda, T., Miura, T. and Shibata, T., "Effect of Lowconcentration Chlorine Dioxide Gas Against Bacteria and Viruses on a Glass Surface in Wet Environments," Lett. Appl. Microbiol., 53(6), 628-634(2011). https://doi.org/10.1111/j.1472-765X.2011.03156.x
  9. Dietrich, A. M., Orr, M. P., Gallagher, D. L. and Hoehn, R. C., "Tastes and Odors Associated with Chlorine Dioxide," J. American Water Works Association, 84(6), 82-88(1992).
  10. Kim, M. and Saito, K., "Radiation-induced Graft Polymerization and Sulfonation of Glycidyl Methacrylate on to Porous Hollow-fiber Membranes with Different Pore Sizes," Radiat. Phys. Chem., 57, 167-172(2000). https://doi.org/10.1016/S0969-806X(99)00314-X
  11. Kim, Y. J., Lee, S. H., Hong, S. K., Kim, M. and Park, S. J., "Enzyme Activity of Lipase Immobilized Non-woven Fabric for Biodiesel Production," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(1), 121-127(2010).
  12. Kawakita, H., Sugita, K., Saito, K. and Tamada, M., "Production of Cycloisomaltooligosaccharides from Dextran Using Enzyme Immobilized in Multilayers Onto Porous Membranes," Biotechnol. Progr., 18, 465-469(2002). https://doi.org/10.1021/bp0200245
  13. Saito, K., Ito, M., Yamagishi, H. and Furusaki, S., "Novel Hollow Fiber Membrane for the Removal of Metal Ion During Permeation: Preparation by Radiation-induced Cografting of a Crosslinking Agent with Reactive Monomer," I&EC RESEARCH, 28, 1808(1989).
  14. Kim, M., "Amino Acid Addition to Epoxy-group-containing Polymer Chain Grafted Onto a Porous Membrane," J. Membr. Sci., 56, 289-302(1991). https://doi.org/10.1016/S0376-7388(00)83039-2