DOI QR코드

DOI QR Code

Preparation and Gas Permeability of ZIF-7 Membranes Prepared via Two-step Crystallization Technique

  • Li, Fang (College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University) ;
  • Li, Qiming (College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University) ;
  • Bao, Xinxia (College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University) ;
  • Gui, Jianzhou (College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University) ;
  • Yu, Xiaofei (College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University)
  • Received : 2013.12.19
  • Accepted : 2014.02.20
  • Published : 2014.06.01

Abstract

Continuous and dense ZIF-7 membranes were successfully synthesized on ${\alpha}-Al_2O_3$ porous substrate via two-step crystallization technique. ZIF-7 seeding layer was first deposited on porous ${\alpha}-Al_2O_3$ substrate by in-situ low temperature crystallization, and then ZIF-7 membrane layer can be grown through the secondary high-temperature crystallization. Two synthesis solutions with different concentration were used to prepare ZIF-7 seeding layer and membrane layer on porous ${\alpha}-Al_2O_3$ substrate, respectively. As a result, a continuous and defect-free ZIF-7 membrane layer can be prepared on porous ${\alpha}-Al_2O_3$ substrate, as confirmed by scanning electron microscope. XRD characterization shows that the resulting membrane layer is composed of pure ZIF-7 phase without any impurity. A single gas permeation test of $H_2$, $O_2$, $CH_4$ or $CO_2$ was conducted based on our prepared ZIF-7 membrane. The ZIF-7 membrane exhibited excellent H2 molecular sieving properties due to its suitable pore aperture and defect-free membrane layer.

Keywords

References

  1. Tang, C. M. and Li, X. L., Korean J. Chem. Eng., 30(5), 169 (2012).
  2. Han, S., Huang, Y. G., Watanabe, T., Nair, S., Walton, K. S., Sholl, D. S. and Meredith, J. C., Microporous Mesoporous Mater., 173, 86(2013). https://doi.org/10.1016/j.micromeso.2013.02.002
  3. Isaeva, V. I., Tkachenko, O. P., Brueva, T. R., Kapustin, G. I., Afonina, E.V., Mishin, I. V., Gryunert, V., Kustov, L. M., Solov'eva, S. E. and Antipin, I. S. Korean J. Chem. Eng., 85(4), 719(2011).
  4. Song, J. L., Zhang, B. B., Jiang, T., Yang, G. Y. and Han, B. X., Korean J. Chem. Eng., 6(1), 21(2011).
  5. Li, Q., Zhang, W., Miljanic, O. S., Knobler, C. B., Stoddart, J. F. and Yaghi, O. M., Chem. Commun., 46, 380(2010). https://doi.org/10.1039/b919923c
  6. Volkringer, C. and Loiseau, T., Mater. Res. Bull., 41, 948 (2006). https://doi.org/10.1016/j.materresbull.2006.01.022
  7. Wu, H. B., Wei, S., Zhang, L., Xu, R., Hng, H. H., Lou, X. W., Chem. Eur. J., 19, 10804(2013). https://doi.org/10.1002/chem.201301689
  8. Wu, X. F., Bao, Z. B., Yuan, B., Wang, J., Sun, Y. Q., Luo, H. M. and Deng, S. G., Microporous Mesoporous Mater., 180, 114 (2013). https://doi.org/10.1016/j.micromeso.2013.06.023
  9. Ebrahim, A. M., Levasseur, B. and Bandosz, T. J., Langmuir, 29, 168(2013). https://doi.org/10.1021/la302869m
  10. Kong, X., Deng, H., Yan, F., Kim, J., Swisher, J. A., Smit, B., Yaghi, O. M. and Reimer, J. A., Science, 341, 882(2013). https://doi.org/10.1126/science.1238339
  11. Tao, K., Kong, C. L. and Chen, L., Chem. Eng. J., 220, 1(2013). https://doi.org/10.1016/j.cej.2013.01.051
  12. Moggach, S. A., Bennett, T. D. and Cheetham, A. K., Angew. Chem. Int. Ed., 48, 7087(2009). https://doi.org/10.1002/anie.200902643
  13. Peralta, D., Chaplais, G., Paillaud, J. L., Simon-Masseron, A., Barthelet, K. and Pirngruber, G. D., Microporous Mesoporous Mater., 173, 1(2013). https://doi.org/10.1016/j.micromeso.2013.01.012
  14. Zheng, N., Park, K. S., Cote, A. P., Choi, J. Y., Huang, R. D., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. and Yaghi, O. M., PNAS, 103, 10186(2006). https://doi.org/10.1073/pnas.0602439103
  15. Huang, A., Bux, H., Steinbach, F. and Caro, J., Angew. Chem. Int. Ed., 49, 4958(2010). https://doi.org/10.1002/anie.201001919
  16. Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., Quoineaud, A. A. and Bats, N., J. Am. Chem. Soc., 132, 12365(2010). https://doi.org/10.1021/ja103365s
  17. Krishna, R. and van Baten, J. M., Sep. Purif. Technol., 87, 120 (2012). https://doi.org/10.1016/j.seppur.2011.11.031
  18. Li, Y., Liu, J. and Yang, W., J. Membr. Sci., 281, 646(2006). https://doi.org/10.1016/j.memsci.2006.04.051
  19. Lee, T., Choi, J. and Tsapatsis, M., J. Membr. Sci., 436, 79(2013). https://doi.org/10.1016/j.memsci.2013.02.028
  20. Chmelik, C., van Baten, J. and Krishna, R., J. Membr. Sci., 397-398, 87(2012). https://doi.org/10.1016/j.memsci.2012.01.013
  21. Pan, Y., Wang, B. and Lai, Z., J. Membr. Sci., 421-422, 292 (2012). https://doi.org/10.1016/j.memsci.2012.07.028
  22. Venna, S. R. and Carreon, M. A., J. Am. Chem. Soc., 132, 76(2009).
  23. Bux, H., Liang, F., Li, Y., Cravillon, J., Wiebcke, M. and Caro, J., J. Am. Chem. Soc., 131, 1600(2009).
  24. Hertag, L., Bux, H., Caro, J., Chmelik, C., Remsungnen, T., Knauth, M. and Fritzsche, S., J. Membr. Sci., 377, 36(2011). https://doi.org/10.1016/j.memsci.2011.01.019
  25. Liu, Y., Hu, E., Khan, E. A. and Lai, Z., J. Membr. Sci., 353, 36(2010). https://doi.org/10.1016/j.memsci.2010.02.023
  26. Serre, C., Millange, F., Thouvenot, C., Nogues, M., Marsolier, G., Louër, D. and Ferey, G., J. Am. Chem. Soc., 124, 13519(2002). https://doi.org/10.1021/ja0276974
  27. Li, Y., Liang, F., Bux, H., Yang, W. and Caro, J., J. Membr. Sci., 354, 48(2010). https://doi.org/10.1016/j.memsci.2010.02.074
  28. Li, T., Pan, Y. C., Peinemann, K. V. and Lai, Z. P., J. Membr. Sci., 425-426, 235(2013). https://doi.org/10.1016/j.memsci.2012.09.006
  29. Gucuyener, C., van den Bergh, J., Gascon, J. and Kapteijn, F., J. Am. Chem. Soc., 132, 17704(2010). https://doi.org/10.1021/ja1089765
  30. Nune, S. K., Thallapally, P. K., Dohnalkova, A., Wang, C., Liu, J. and Exarhos, G. J., Chem. Commun., 46, 4878(2010). https://doi.org/10.1039/c002088e
  31. Shekhah, O., Wang, H., Zacher, D., Fischer, R. A. and Woll, C., Angew. Chem. Int. Ed., 48, 5038(2009). https://doi.org/10.1002/anie.200900378
  32. Ni, Z. and Masel, R. I., J. Am. Chem. Soc., 128, 12394(2006). https://doi.org/10.1021/ja0635231

Cited by

  1. Freestanding fiber mats of zeolitic imidazolate framework 7 via one-step, scalable electrospinning vol.133, pp.32, 2016, https://doi.org/10.1002/app.43788
  2. Polyacrylonitrile nanofibers with added zeolitic imidazolate frameworks (ZIF-7) to enhance mechanical and thermal stability vol.118, pp.24, 2015, https://doi.org/10.1063/1.4938112
  3. Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes vol.6, pp.3, 2018, https://doi.org/10.1039/C7TA07512J
  4. Polymer Composite Membrane with Penetrating ZIF‐7 Sheets Displays High Hydrogen Permselectivity vol.131, pp.45, 2014, https://doi.org/10.1002/ange.201911226
  5. Polymer Composite Membrane with Penetrating ZIF‐7 Sheets Displays High Hydrogen Permselectivity vol.58, pp.45, 2014, https://doi.org/10.1002/anie.201911226