DOI QR코드

DOI QR Code

Spatial and Temporal Distribution Characteristics of Zooplankton Appeared on Early Construction of Pumped Storage Power Plant Dam

양수발전댐의 건설 초기에 발생한 동물플랑크톤군집의 시.공간적인 분포특성

  • Lee, Jaeyong (Department of Environmental Science, Kangwon National University) ;
  • Jung, Sungmin (Department of Environmental Science, Kangwon National University) ;
  • Chang, Kun (Yangyang Pumped Storage Power Plant, Korea Hydro and Nuclear Power Co.) ;
  • Kim, Bomchul (Department of Environmental Science, Kangwon National University)
  • 이재용 (강원대학교 자연과학대학 환경학과) ;
  • 정성민 (강원대학교 자연과학대학 환경학과) ;
  • 장군 (한국수력원자력(주) 양양양수발전소) ;
  • 김범철 (강원대학교 자연과학대학 환경학과)
  • Received : 2013.06.07
  • Accepted : 2013.10.31
  • Published : 2014.02.28

Abstract

Spatial and temporal distributions of zooplankton were measured in an oligotrophic pumped storage-type hydroelectric reservoir which was composed of two reservoirs exchanging water daily, with water going up at night and going down during the day. Repetitive diel disturbance of the water column can be a unique feature of this reservoir system. Chl-${\alpha}$ concentration was highest in the early winter season. Phytoplankton density was lower in summer monsoon due to high flushing rate on rainy days. The zooplankton density was higher in the smaller upper reservoir possibly due to lower fish density in the upper reservoir. In the seasonal variation a time gap was observed between the phytoplankton bloom and the zooplankton bloom (particularly a rotifer, Keratella cochlearis). It is likely to that Keratella production is partially supported by heterotrophic food sources than phytoplankton. The dominance of a mixotrophic dinoflagellate (Peridinium bipes f. ocultatum) might have complicated the trophic relationship between phytoplankton and zooplankton. Our results provide some ecological information of zooplankton community in a highly disturbed alpine reservoir ecosystem relying on mostly allochthonous organic matter.

2006년에 준공한 양양양수발전댐에서 동물플랑크톤의 시 공간적인 밀도변동을 파악하기 위해 2007~2009년 월 1회 조사(결빙기 제외)를 시행 분석하였다. 고산 삼림에 위치한 양수발전댐은 거의 매일 밤에 하부댐에서 양수한 물을 상부댐으로 양수하여 낮에 방류를 통해 전력을 생산하고 있다. 매일 반복되는 수체의 교란은 기존의 댐과는 다른 독특한 동물플랑크톤의 시공간적인 변동을 초래할 것으로 예상하였다. Chl-a 농도는 초겨울에 가장 높은 양상을 보인 한편, 몬순강우 시기에는 가장 낮은 농도를 보이는 일반적인 특성 또한 보였다. 동물플랑크톤의 밀도는 하부댐에 비해 상부댐에서 높게 나타났는데, 이는 하부댐과는 달리 상부댐에는 어류의 포식압에 의한 영향이 작기 때문으로 사료된다. 윤충류(특히, Keratella cochlearis)의 출현 시기와 식물플랑크톤의 현존량이 높아지는 시기 사이에 뚜렷한 차이가 있었다. 이는 윤충류가 식물플랑크톤 이외에 용존유기물과 박테리아 등과 같은 먹이원에 일부 의존하고 있음을 시사한다. 본 논문에서는 동물플랑크톤에 포함시키지는 않았으나 mixotrophic dinoflagellate (Peridinium bipes f. ocultatum)이 상당한 출현을 보였는데 Peridinium은 식물플랑크톤과 동물플랑크톤의 사이에 위치하는 혼합영양방식을 가지고 있어 이들 종의 생태적인 특성을 연구하는 것은 외부기원유기물의 기여가 큰 수환경내 물질순환을 이해하는데 중요한 지표가 될 수 있다. 본 논문은 고산에 위치하거나 주변 삼림으로부터 외부기원유기물의 기여도가 높은 저수지 및 인공댐에 서식하는 동물플랑크톤군집에 대한 생태학적인 메커니즘을 이해하는데 기초정보로서 활용될 수 있다.

Keywords

References

  1. APHA (American Public Health Association). 1998. Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, Washington DC.
  2. Baranyi, C., T. Hein, C. Holarek, S. Keckeis and F. Schiemer. 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biology 47: 473-482. https://doi.org/10.1046/j.1365-2427.2002.00822.x
  3. Bourdier, G.G. and C.A. Amblard. 1989. Lipid in Acanthodiaptomus denticornis during starvation and fed on three different algae. Journal of Plankton Research 11: 1201-1212. https://doi.org/10.1093/plankt/11.6.1201
  4. Burkholder, J.M. 1992. Phytoplankton and episodic suspended sediment loading: Phosphate partitioning and mechanisms for survival. Limnology and Oceanography 37: 974-988. https://doi.org/10.4319/lo.1992.37.5.0974
  5. Chang, K.H., S.J. Hwang, M.H. Jang, H.W. Kim, K.S. Jeong and G.J. Joo. 2001. Effect of juvenile fish predation on the zooplankton community in the large regulated Nakdong River, South Korea. Korean Journal of Limnological Society 34: 310-318.
  6. Conde-Porcuna, J.M., E. Ramos-Rodriguez and C. Perez-Martinez. 2002. Correlations between nutrient concentrations and zooplankton populations in a mesotrophic reservoir. Freshwater Biology 47: 1463-1473. https://doi.org/10.1046/j.1365-2427.2002.00882.x
  7. Conde-Porcuna, J.M. and S. Declerck. 1998. Regulation of rotifer species by invertebrate predators in a hypertrophic lake: selective predation on egg-bearing females and induction of morphological defenses. Journal of Plankton Research 20: 605-618. https://doi.org/10.1093/plankt/20.4.605
  8. del Giorgio, P.A. and R.H. Peters. 1994. Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnology and Oceanography 39: 772-787. https://doi.org/10.4319/lo.1994.39.4.0772
  9. Ederington, M.C., G.B. McManus and H.R. Harvey. 1995. Trophic transfer of fatty acids, sterols, and a triterpenoid alcohol between bacteria, a ciliate, and the copepod Acarita tonsa. Limnology and Oceanography 40: 860-867. https://doi.org/10.4319/lo.1995.40.5.0860
  10. Gophen, M. 2012. The Ecology of Keratella cochlearis in Lake Kinneret (Israel). Open Journal of Modern Hydrology 2: 1-6. https://doi.org/10.4236/ojmh.2012.21001
  11. Harper, D.M. and J.D. Ferguson. 1982. Zooplankton and their relationships with water quality and fisheries. Hydrobiologia 88: 135-145. https://doi.org/10.1007/BF00008305
  12. Helland, I.P., J. Freyhof, P. Kasprzak and T. Mehner. 2007. Temperature sensitivity of vertical distributions of zooplankton and planktivorous fish in a stratified lake. Oecologia 151: 322-330. https://doi.org/10.1007/s00442-006-0541-x
  13. Heo, W.M. and B.C. Kim. 2004. The effect of artificial destratification on phytoplankton in a reservoir. Hydrobiologia 524: 229-239. https://doi.org/10.1023/B:HYDR.0000036142.74589.a4
  14. Heo, W.M., S.Y. Kwon, Y.G. Kim, W.H. Yih, B.J. Lim and B.C. Kim. 2006. Spatial and Temporal Variations of Environmental Factors and Phytoplankton Community in Lake Yongdam, Korea. Korean Journal of Limnological Society 39: 366-377.
  15. Hitchman, R.B. and H.L.J. Jones. 2000. The role of mixotrophic protists in the population dynamics of the microbial food web in a small artificial pond. Freshwater Biology 43: 231-241. https://doi.org/10.1046/j.1365-2427.2000.00541.x
  16. Hwang, G.S., B. Kim, J.O. Kim, J.K. Kim and Y.C. Kim. 2005. The effect of rainfall on the water quality of a small reservoir (Lake Wangkung, Korea). Korean Journal of Limnological Society 38: 39-43.
  17. Ibe, K., T. Nagata and T. Hanazato. 2011. Experimental analysis of the predation impact of the larvae of pond smelt (Hypomesus transpacificus nipponensis) on zooplankton populations established in mesocosms. Limnology 12: 169-174. https://doi.org/10.1007/s10201-010-0334-0
  18. Jeong, H.J., Y.D. Yoo, J.S. Kim, K.A. Seong, N.S. Kang and T.H. Kim. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal 45: 65-91. https://doi.org/10.1007/s12601-010-0007-2
  19. Kim, B.C., J.O. Kim, M.S. Jun and S.J. Hwang. 1999. Seasonal Dynamics of Phytoplankton and Zooplankton Community in Lake Soyang. Korean Journal of Limnological Society 32: 127-134.
  20. Kim, H.S., J.C. Park and S.J. Hwang. 2003. Dynamics of phytoplankton and zooplankton of a shallow eutrophic lake (Lake Ilgam). Korean Journal of Limnological Society 36: 286-294.
  21. Kim, H.W., G.J. Joo and N. Walz. 2000. Difference of zooplankton development along a lake and a river stretch of the River Spree (Germany). Korean Journal of Limnological Society 33: 197-205.
  22. Kim, H.W., K.H. Chang and G.J. Joo. 2005. Characteristics and inter-annual variability of zooplankton dynamics in the middle part of the river (Nakdong River). Korean Journal of Limnological Society 38: 412-419.
  23. Kirk, K. 2002. Competition in variable environments: experiments with planktonic rotifers. Freshwater Biology 47: 1089-1096. https://doi.org/10.1046/j.1365-2427.2002.00841.x
  24. Lee, J.H. 2004. Effect of hydraulic-gun-aerators on cyanobacterial bloom in a dam reservoir. Algae 19: 23-30. https://doi.org/10.4490/ALGAE.2004.19.1.023
  25. Lee, J.Y., B.C. Kim, T. Yoshioka and S. Hino. 2008. The difference isotopic signatures of co-existing zooplankton species in two alpine lakes. Korean Journal of Limnological Society 41: 294-300.
  26. Lee J.Y., J.K. Kim, J.S. Owen, Y.S. Choi, K.H. Shin, S.M Jung and B.C. Kim. 2013. Variation in carbon and nitrogen stable isotopes in POM and zooplankton in a deep reservoir and relationship with hydrological characteristics. Journal of Freshwater Ecology 28: 47-62. https://doi.org/10.1080/02705060.2012.689999
  27. Lee, J.Y., J.K. Kim, Y.K. Jung and B.C. Kim. 2010. Isotopic differences among zooplankton taxa and seasonal variation of zooplankton community coexisted with Microcystis. Korean Journal of Limnological Society 43: 1-10.
  28. Lee, J.Y., T. Yoshioka and T. Hanazato. 2002. Faunal trophic interaction in an oligotrophic-dystrophic lake (Shirakomaike, Japan) Limnology 3: 151-158. https://doi.org/10.1007/s102010200018
  29. Lee, W.S. and M.S. Han. 2004. Community structure of plankton in eutrophic water systems with different residence time. Korean Journal of Limnological Society 37: 263-271.
  30. Misson, B. and D. Latour. 2012. Influence of light, sediment mixing, temperature and duration of the benthic life phase on the benthic recruitment of Microcystis. Journal of Plankton Research 34: 113-119. https://doi.org/10.1093/plankt/fbr093
  31. Mizuno, T. and E. Takahashi. 1999. An illustrated guide to freshwater zooplankton in Japan. Tokai University Press.
  32. Obertegger, U., G. Flaim, M.G. Braioni, R. Sommaruga, F. Corradini and A. Borsato. 2007. Water residence time as a driving force of zooplankton structure and succession. Aquatic Sciences 69: 575-583. https://doi.org/10.1007/s00027-007-0924-z
  33. Ooms-Wilms, A.L. 1997. Are bacteria an important food source for rotifers in eutrophic lakes? Journal of Plankton Research 19: 1125-1141. https://doi.org/10.1093/plankt/19.8.1125
  34. Park, J.W., K.L. Lee, J.S. Choi and H.S. Kim. 2005. Dynamics of Phytoplankton Community after Formation of Turbid Water in Lake Imha. Korean Journal of Limnological Society 38: 429-434.
  35. Park, M.S., J.Y. Lee, S.M. Jung, C.K. Park, K. Chang and B.C. Kim. 2012. Effects of sand supply and artificial floods on periphyton in the downstream of a Dam (Yangyang Dam, Korea). Journal of Korean Society on Water Environment 28: 418-425.
  36. Pollard, A.I., M.J. Gonzalez, M.J. Vanni and J.L. Headworth. 1998. Effects of turbidity and biotic factors on the rotifer community in an Ohio reservoir. Hydrobiologia 387/388: 215-223.
  37. Potter, D.U. and J.L. Meyer. 1982. Zooplankton communities of a new pumped storage reservoir. Water Resources Bulletin 18: 635-642. https://doi.org/10.1111/j.1752-1688.1982.tb00046.x
  38. Rojo, C., M.A. Rodrigo and M.M. Baron-Rodriguez. 2007. Dynamics of the planktonic food web in Colgada Lake (Lagunas de Ruidera Natural Park). Limnetica 26: 251-264.
  39. Spoljar, M., I. Habdija and B. Primc-Habdija. 2007. The influence of the lotic and lentic stretches on the zooseston flux through the Plitvice Lakes (Croatia). Annales de Limnologie-International Journal of Limnology 43: 29-40. https://doi.org/10.1051/limn/2007025
  40. Thorp, J.H. and S. Mantovani. 2005. Zooplankton of turbid and hydrologically dynamic prairie rivers. Freshwater Biology 50: 1474-1491. https://doi.org/10.1111/j.1365-2427.2005.01422.x
  41. Uhm, S.H. and S.J. Hwang. 2006. Grazing Relationship between Phytoplankton and Zooplankton in Lake Paldang Ecosystem. Korean Journal of Limnological Society 39: 390-401.
  42. Yamamoto, Y. 2009. Effect of temperature on recruitment of cyanobacteria from the sediment and bloom formation in the shallow pond. Plankton and Benthos Research 4: 95-103. https://doi.org/10.3800/pbr.4.95