DOI QR코드

DOI QR Code

Sequence Analysis of cytb Gene in Echinococcus granulosus from Western China

  • Zhong, Xiuqin (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Wang, Ning (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Hu, Dandan (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Wang, Jiahai (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Liu, Tianyu (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Gu, Xiaobin (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Wang, Shuxian (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Peng, Xuerong (Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University) ;
  • Yang, Guangyou (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University)
  • Received : 2013.10.19
  • Accepted : 2014.01.10
  • Published : 2014.04.30

Abstract

Echinococcus granulosus is the causative agent of cystic echinococcosis with medical and veterinary importance in China. Our main objective was to discuss the genotypes and genetic diversity of E. granulosus present in domestic animals and humans in western China. A total of 45 hydatid cyst samples were collected from sheep, humans, and a yak and subjected to an analysis of the sequences of mitochondrial cytochrome b (cytb) gene. The amplified PCR product for all samples was a 1,068 bp band. The phylogenetic analysis showed that all 45 samples were identified as E. granulosus (genotype G1). Ten haplotypes were detected among the samples, with the main haplotype being H1. The haplotype diversity was 0.626, while the nucleotide diversity was 0.001. These results suggested that genetic diversity was low among our samples collected from the west of China based on cytb gene analysis. These findings may provide more information on molecular characteristics of E. granulosus from this Chinese region.

Keywords

References

  1. Thompson RC. The taxonomy, phylogeny and transmission of Echinococcus. Exp Parasitol 2008; 119: 439-446. https://doi.org/10.1016/j.exppara.2008.04.016
  2. Nakao M, Yanagida T, Okamoto M, Knapp J, Nkouawa A, Sako Y, Ito A. State-of-the-art Echinococcus and Taenia: phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis. Infect Genet Evol 2010; 10: 444-452. https://doi.org/10.1016/j.meegid.2010.01.011
  3. Nakao M, Lavikainen A, Yanagida T, Ito A. Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae). Int J Parasitol 2013; 43: 1017-1029. https://doi.org/10.1016/j.ijpara.2013.06.002
  4. McManus DP. Current status of the genetics and molecular taxonomy of Echinococcus species. Parasitology 2013; 140: 1-7. https://doi.org/10.1017/S0031182012001278
  5. Schantz PM. Progress in diagnosis, treatment and elimination of echinococcosis and cysticercosis. Parasitol Int 2006; 55(suppl): S7-S13. https://doi.org/10.1016/j.parint.2005.11.050
  6. Thompson RC, McManus DP. Aetiology: parasites and life-cyles. In Eckert J, Gemmell MA, Meslin FX, Pawlowski ZS eds, WHO/OIE Manual on Echinococcosis in Humans and Animals: a Public Health Problem of Global Concern. Paris, France. World Organisation for Animal Health. 2001, p 1-19.
  7. Pearson M, Le TH, Zhang LH, Blair D, Dai THN, McManus DP. Molecular taxonomy and strain analysis in Echinococcus. In Craig P, Pawlowski Z eds, Cestode zoononoses: Echinococcosis and Cysticercosis, an Emergent and Global Problem. Amsterdam, The Netherlands. IOS Press. 2002, p 205-219.
  8. Thompson RC, McManus DP. Towards a taxonomic revision of the genus Echinococcus. Trends Parasitol 2002; 18: 452-457. https://doi.org/10.1016/S1471-4922(02)02358-9
  9. Eckert J, Deplazes P. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev 2004; 17: 107-135. https://doi.org/10.1128/CMR.17.1.107-135.2004
  10. Bart JM, Abdukader M, Zhang YL, Lin RY, Wang YH, Nakao M, Ito A, Craig PS, Piarroux R, Vuitton DA, Wen H. Genotyping of human cystic echinococcosis in Xinjiang, PR China. Parasitology 2006; 133: 571-579. https://doi.org/10.1017/S0031182006000734
  11. Liu Q, Cao LL, Zhang YG, Xu D, Shang LM, Wang XL, Wei F, Xiao LH, Ma RL, Cai JS, Zhao QB. Genotypes of Echinococcus granulosus in animals from Yushu, northeastern China. Vector Borne Zoonotic Dis 2013; 13: 134-137. https://doi.org/10.1089/vbz.2012.1050
  12. Ma JY, Wang H, Lin GH, Craig PS, Ito A, Cai ZY, Zhang TZ, Han XM, Ma X, Zhang JX, Liu YF, Zhao YM, Wang YS. Molecular identification of Echinococcus species from eastern and southern Qinghai, China, based on the mitochondrial cox1 gene. Parasitol Res 2012; 111: 179-184. https://doi.org/10.1007/s00436-012-2815-z
  13. Yan N, Nie HM, Jiang ZR, Yang AG, Deng SJ, Guo L, Yu H, Yan YB, Dawa T, Kong WS, Wang N, Wang JH, Xie Y, Fu Y, Yang DY, Wang SX ,Gu XB, Peng XR, Yang GY. Genetic variability of Echinococcus granulosus from the Tibetan plateau inferred by mitochondrial DNA sequences. Vet Parasitol 2013; 196: 179-183. https://doi.org/10.1016/j.vetpar.2013.02.010
  14. Wang N, Wang JH, Hu DD, Zhong XQ, Jiang ZR, Yang AG, Deng SJ, Guo L, Dawa T, Wang SX, Gu XB, Peng XR, Yang GY. Genetic variability of Echinococcus granulosus based on the mitochondrial 16S ribosomal RNA gene. Mitochondr DNA 2013 (published online: http://informahealthcare.com/doi/abs/10.3109/19401736.2013.840590)
  15. Campbell G, Garcia HH, Nakao M, Ito A, Craig PS. Genetic variation in Taenia solium. Parasitol Int 2006; 55(suppl): S121-S126. https://doi.org/10.1016/j.parint.2005.11.019
  16. Ma SM, Maillard H, Zhao HL, Huang X, Wang H, Geng PL, Bart JM, Piarroux R. Assessment of Echinococcus granulosus polymorphism in Qinghai Province, People's Republic of China. Parasitol Res 2008; 102: 1201-1206. https://doi.org/10.1007/s00436-008-0894-7
  17. Xiao N, Qiu JM, Nakao M, Nakaya K, Yamasaki H, Sako Y, Mamuti W, Schantz PM, Craig PS, Ito A. Short report: identification of Echinococcus species from a yak in the Qinghai-Tibet Plateau region of China. Am J Trop Med Hyg 2003; 69: 445-446.
  18. Li TY, Ito A, Nakaya K, Qiu J, Nakao M, Zhen R, Chen X, Giraudoux P, Craig PS. Species identification of human echinococcosis using histopathology and genotyping in northwestern China. Trans R Soc Trop Med Hyg 2008; 102: 585-590. https://doi.org/10.1016/j.trstmh.2008.02.019
  19. Konyaev SV, Yanagida T, Ivanov MV, Ruppel VV, Sako Y, Nakao M, Ito A. The first report on cystic echinococcosis in a cat caused by Echinococcus granulosus sensu stricto (G1). J Helminthol 2012; 86: 391-394. https://doi.org/10.1017/S0022149X1100054X
  20. Rozas J, Sanchez-Delbarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003; 19: 2496-2497. https://doi.org/10.1093/bioinformatics/btg359
  21. Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol 2000; 9: 1657-1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  22. Le TH, Pearson MS, Blair D, Dai N, Zhang LH, McManus DP. Complete mitochondrial genomes confirm the distinctiveness of the horse-dog and sheep-dog strains of Echinococcus granulosus. Parasitology 2002; 124: 97-112.
  23. Nakao M, McManus DP, Schantz PM, Craig PS, Ito A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 2007; 134: 713-722. https://doi.org/10.1017/S0031182006001934
  24. Nakao M, Okamoto M, Sako Y, Yamasaki H, Nakaya K, Ito A. A phylogenetic hypothesis for the distribution of two genotypes of the pig tapeworm Taenia solium worldwide. Parasitology 2002; 124: 657-662.

Cited by

  1. Microdiversity of Echinococcus granulosus sensu stricto in Australia vol.143, pp.8, 2016, https://doi.org/10.1017/s0031182016000445
  2. Genetic diversity of three Chinese native sheep breeds vol.53, pp.1, 2014, https://doi.org/10.1134/s1022795417010045
  3. Cytochrome b conservation between six camel breeds reared in Egypt vol.15, pp.1, 2014, https://doi.org/10.1016/j.jgeb.2017.04.006
  4. Mitochondrial genome data confirm that yaks can serve as the intermediate host of Echinococcus canadensis (G10) on the Tibetan Plateau vol.11, pp.1, 2014, https://doi.org/10.1186/s13071-018-2684-0
  5. Genetic characterization of Echinococcus isolates from various intermediate hosts in the Qinghai-Tibetan Plateau Area, China vol.146, pp.10, 2014, https://doi.org/10.1017/s0031182019000544
  6. Genetic variation of Echinococcus spp. in yaks and sheep in the Tibet Autonomous Region of China based on mitochondrial DNA vol.12, pp.1, 2014, https://doi.org/10.1186/s13071-019-3857-1
  7. Genotypes of Echinococcus isolated from domestic livestock in Kazakhstan vol.94, pp.None, 2020, https://doi.org/10.1017/s0022149x19000634
  8. Haplotype comparisons of Echinococcus granulosus sensu lato via mitochondrial gene sequences (co1, cytb, nadh1) among Pakistan and its neighbouring countries vol.148, pp.9, 2014, https://doi.org/10.1017/s0031182021000688