DOI QR코드

DOI QR Code

Sequence Analysis and Molecular Characterization of Wnt4 Gene in Metacestodes of Taenia solium

  • Hou, Junling (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Luo, Xuenong (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Wang, Shuai (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Yin, Cai (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Shaohua (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhu, Xueliang (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Dou, Yongxi (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Cai, Xuepeng (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences)
  • 투고 : 2013.10.24
  • 심사 : 2014.02.24
  • 발행 : 2014.04.30

초록

Wnt proteins are a family of secreted glycoproteins that are evolutionarily conserved and considered to be involved in extensive developmental processes in metazoan organisms. The characterization of wnt genes may improve understanding the parasite's development. In the present study, a wnt4 gene encoding 491amino acids was amplified from cDNA of metacestodes of Taenia solium using reverse transcription PCR (RT-PCR). Bioinformatics tools were used for sequence analysis. The conserved domain of the wnt gene family was predicted. The expression profile of Wnt4 was investigated using real-time PCR. Wnt4 expression was found to be dramatically increased in scolex evaginated cysticerci when compared to invaginated cysticerci. In situ hybridization showed that wnt4 gene was distributed in the posterior end of the worm along the primary body axis in evaginated cysticerci. These findings indicated that wnt4 may take part in the process of cysticerci evagination and play a role in scolex/bladder development of cysticerci of T. solium.

키워드

참고문헌

  1. Flisser A, Avila G, Maravilla P. Biology of Taenia solium, Taenia saginata and Taenia saginata asiatica. In Murrell KD, Dorny P, Flisser A, Geerts S, Kyvsgaard NC, McManus D, Nash T, Pawlowski Z eds, WHO/FAO/OIE, Guidelines for the Surveillance, Prevention and Control of Taeniosis/Cysticercosis. Paris, France. Office International des Epizooties. 2005, p 1-9.
  2. Sciutto E, Fragoso G, Fleury A, Laclette JP, Sotelo J, Aluja A, Vargas L, Larralde C. Taenia solium disease in humans and pigs: an ancient parasitosis disease rooted in developing countries and emerging as a major health problem of global dimensions. Microbes Infect 2000; 2: 1875-1890. https://doi.org/10.1016/S1286-4579(00)01336-8
  3. Larralde C, Padilla A, Hernandez M, Govezensky T, Sciutto E, Gutierrez G, Tapia-Conyer R, Salvatierra B, Sepúlveda J. Seroepidemiology of cysticercosis in Mexico. Salud Publica Mex 1992; 34: 197-210.
  4. Toledo A, Fragoso G, Rosas G, Hernandez M, Gevorkian G, Lopez-Casillas F, Hernández B, Acero G, Huerta M, Larralde C, Sciutto E. Two epitopes shared by Taenia crassiceps and Taenia solium confer protection against murine T. crassiceps cysticercosis along with a prominent T1 response. Infect Immun 2001; 69: 1766-1773. https://doi.org/10.1128/IAI.69.3.1766-1773.2001
  5. Port F, Basler K. Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic 2010; 11: 1265-1271. https://doi.org/10.1111/j.1600-0854.2010.01076.x
  6. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997; 11: 3286-3305. https://doi.org/10.1101/gad.11.24.3286
  7. Croce JC, McClay DR. Evolution of the Wnt pathways. In Vincan E ed, Wnt Signaling, Vol. II: Pathway Models. Methods Mol Biol 2008; 469: 3-18. https://doi.org/10.1007/978-1-60327-469-2_1
  8. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781-810. https://doi.org/10.1146/annurev.cellbio.20.010403.113126
  9. Miller JR. The Wnts. Genome Biol 2002; 3: 3001.
  10. Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003; 5: 367-377. https://doi.org/10.1016/S1534-5807(03)00266-1
  11. Li HF, Wang XB, Jin YP, Xia YX, Feng XG, Yang JM, Qi XY, Yuan CX, Lin JJ. Wnt4, the first member of the Wnt family identified in Schistosoma japonicum, regulates worm development by the canonical pathway. Parasitol Res 2010; 107: 795-805. https://doi.org/10.1007/s00436-010-1933-8
  12. Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sanchez-Flores A, Brooks KL, Tracey A, Bobes RJ, Fragoso G, Sciutto E, Aslett M, Beasley H, Bennett HM, Cai J, Camicia F, Clark R, Cucher M, De Silva N, Day TA, Deplazes P, Estrada K, Fernández C, Holland PW, Hou J, Hu S, Huckvale T, Hung SS, Kamenetzky L, Keane JA, Kiss F, Koziol U, Lambert O, Liu K, Luo X, Luo Y, Macchiaroli N, Nichol S, Paps J, Parkinson J, Pouchkina-Stantcheva N, Riddiford N, Rosenzvit M, Salinas G, Wasmuth JD, Zamanian M, Zheng Y; Taenia solium Genome Consortium, Cai X, Soberón X, Olson PD, Laclette JP, Brehm K, Berriman M. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 2013; 496: 57-63. https://doi.org/10.1038/nature12031
  13. Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Holstein TW. The Wnt code: cnidarians signal the way. Oncogene 2006; 25: 7450-7460. https://doi.org/10.1038/sj.onc.1210052
  14. Coudreuse D, Korswagen HC. The making of Wnt: new insights into Wnt maturation, sorting and secretion. Development 2007; 134: 3-12. https://doi.org/10.1242/dev.02699
  15. Riddiford N, Olson PD. Wnt gene loss in flatworms. Dev Genes Evol 2011; 221: 187-197. https://doi.org/10.1007/s00427-011-0370-8
  16. Tang X, Wu Y, Belenkaya TY, Huang Q, Ray L, Qu J, Lin X. Roles of N-glycosylation and lipidation in Wg secretion and signaling. Dev Biol 2012; 364: 32-41. https://doi.org/10.1016/j.ydbio.2012.01.009
  17. Cheetham GM. Novel protein kinases and molecular mechanisms of autoinhibition. Curr Opin Struct Biol 2004; 14: 700-705. https://doi.org/10.1016/j.sbi.2004.10.011
  18. Dissous C, Khayath N, Vicogne J, Capron M. Growth factor receptors in helminth parasites: signalling and host-parasite relationships. FEBS letters 2006; 580: 2968-2975. https://doi.org/10.1016/j.febslet.2006.03.046
  19. Oswald IP, Gazzinelli RT, Sher A, James SL. IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity. J Immunol 1992; 148: 3578-3582.
  20. Vicogne J, Cailliau K, Tulasne D, Browaeys E, Yan YT, Fafeur V, Vilain JP, Legrand D, Trolet J, Dissous C. Conservation of epidermal growth factor receptor function in the human parasitic helminth Schistosoma mansoni. J Biol Chem 2004; 279: 37407-37414. https://doi.org/10.1074/jbc.M313738200
  21. Brehm K. The role of evolutionarily conserved signalling systems in Echinococcus multilocularis development and host-parasite interaction. Med Microbiol Immunol 2010; 199: 247-259. https://doi.org/10.1007/s00430-010-0154-1
  22. Bahia D, Andrade LF, Ludolf F, Mortara RA, Oliveira G. Protein tyrosine kinases in Schistosoma mansoni. Mem Inst Oswaldo Cruz 2006; 101(suppl 1): 137-143.
  23. Martin DD, Beauchamp E, Berthiaume LG. Post-translational myristoylation: fat matters in cellular life and death. Biochimie 2011; 93: 18-31. https://doi.org/10.1016/j.biochi.2010.10.018
  24. Broun M, Gee L, Reinhardt B, Bode HR. Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 2005; 132: 2907-2916. https://doi.org/10.1242/dev.01848
  25. Gurley KA, Elliott SA, Simakov O, Schmidt HA, Holstein TW, Sanchez Alvarado A. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Dev Biol 2010; 347: 24-39. https://doi.org/10.1016/j.ydbio.2010.08.007
  26. Bolognesi R, Farzana L, Fischer TD, Brown SJ. Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum. Curr Biol 2008; 18: 1624-1629. https://doi.org/10.1016/j.cub.2008.09.057
  27. Miyawaki K, Mito T, Sarashina I, Zhang H, Shinmyo Y, Ohuchi H, Noji S. Involvement of wingless/armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev 2004; 121: 119-130. https://doi.org/10.1016/j.mod.2004.01.002
  28. Ryan JF, Baxevanis AD. Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla. Biol Direct 2007; 2: 37. https://doi.org/10.1186/1745-6150-2-37
  29. Gurley KA, Rink JC, Sanchez Alvarado A. Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 2008; 319: 323-327. https://doi.org/10.1126/science.1150029
  30. Iglesias M, Gomez-Skarmeta JL, Salo E, Adell T. Silencing of Smed-betacatenin-1 generates radial-like hypercephalized planarians. Development 2008; 135: 1215-1221. https://doi.org/10.1242/dev.020289
  31. Petersen CP, Reddien PW. Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 2008; 319: 327-330. https://doi.org/10.1126/science.1149943
  32. Tanaka EM, Weidinger G. Heads or tails: can Wnt tell which one is up? Nature Cell Biol 2008; 10: 122-124. https://doi.org/10.1038/ncb0208-122

피인용 문헌

  1. Comparative Transcriptomic Analysis of the Larval and Adult Stages of Taenia pisiformis vol.10, pp.7, 2019, https://doi.org/10.3390/genes10070507