DOI QR코드

DOI QR Code

도시공원 식재유형별 탄소저장량, 연간 탄소흡수량 및 토양호흡량 비교 - 천안시 두정공원을 중심으로 -

Comparison of Carbon Storages, Annual Carbon Uptake and Soil Respiration to Planting Types in Urban Park - The Case Study of Dujeong Park in Cheonan City -

  • 한미경 (공주대학교 생명과학과) ;
  • 김경진 (공주대학교 건설환경공학부) ;
  • 양금철 (공주대학교 건설환경공학부)
  • Han, Mi-Kyoung (Dept. of Life Sciences, Kongju Nat'l Univ.) ;
  • Kim, Kyeong-Jin (Division of Civil & Environmental Engineering, Kongju Nat'l Univ.) ;
  • Yang, Keum-Chul (Division of Civil & Environmental Engineering, Kongju Nat'l Univ.)
  • 투고 : 2013.11.06
  • 심사 : 2014.03.27
  • 발행 : 2014.04.30

초록

본 연구에서는 천안시 두정공원을 대상으로 도시공원의 식재유형별 수목의 탄소저장량, 연간 탄소흡수량, 연간 토양호흡량을 측정하여 비교하였다. 두정공원에서 소나무식재림, 상수리나무군락, 상수리나무-아까시나무식재림, 아까시나무식재림을 선정하여 2012년 3월부터 2013년 2월까지 각 식재림을 분석하였다. 탄소저장량과 연간 탄소흡수량은 수목의 흉고직경을 이용한 상대생장식을 활용하여 산정하였고 토양호흡량은 Li-6400을 이용하여 측정하였다. 소나무식재림, 상수리나무군락, 상수리나무-아까시나무식재림, 아까시나무식재림에서의 탄소저장량은 각각 17.36, 88.63, 115.38, $49.88tonCha^{-1}$였고, 연간 탄소흡수량은 각각 1.04, 2.12, 6.47, $3.67tonCha^{-1}yr^{-1}$로 산정되었다. 개체목당 평균 연간 탄소흡수량은 소나무, 상수리나무, 아까시나무에서 각각 1.81, 17.86, $9.14kgC{\cdot}treeyr^{-1}$로 상수리나무가 가장 높았다. 평균 토양호흡량은 각 식재유형별로 2.20, 1.90, 2.47, $2.51{\mu}mo{\ell}CO_2m^{-2}s^{-1}$로 측정되었고 연간 토양호흡량은 각각 6.66, 5.33, 7.20, $7.25tonCha^{-1}yr^{-1}$로 추정되었다. 본 조사지의 식재유형 중 상수리나무-아까시나무식재림이 탄소저장량과 연간 탄소흡수량이 가장 많아 공원의 탄소흡수원 역할에 크게 기여했고, 소나무식재림은 가장 적게 평가되었다. 본 연구결과는 이산화탄소 흡수원의 역할을 하는 도시공원 수목의 식재와 관리에 필요한 자료로 활용될 수 있다.

This study has compared carbon storages, annual carbon uptakes and annual soil respiration by planting type in Dujeong park, Cheonan city. Four plantations were selected in Dujeong park: Pinus densiflora plantation, Quercus acutissima community, Quercus acutissima-Robinia pseudoacacia plantation, and Robinia pseudoacacia plantation. We investigated each plantations from February 2012 to March 2013. Carbon storage and annual carbon uptake in each plantations were calculated with allometric method (Lee, 2003), and soil respiration was measured by using LI-6400 (LI-COR). Carbon storages in Pinus densiflora plantation, Quercus acutissima community, Quercus acutissima-Robinia pseudoacacia plantation, and Robinia pseudoacacia plantation were $17.36tonCha^{-1}$, $88.63tonCha^{-1}$, $115.38tonCha^{-1}$ and 4$9.88tonCha^{-1}$, and annual carbon uptakes were $1.04tonCha^{-1}yr^{-1}$, $2.12tonCha^{-1}yr^{-1}$, $6.47tonCha^{-1}yr^{-1}$ and $3.67tonCha^{-1}yr^{-1}$, respectively. Average annual carbon uptakes per tree of Pinus densiflora plantation, Quercus acutissima community and Robinia pseudoacacia plantation were $1.81kgC{\cdot}treeyr^{-1}$, $17.86kgC{\cdot}treeyr^{-1}$ and $9.14kgC{\cdot}treeyr^{-1}$ and Quercus acutissima was the greatest. The amounts of carbon released from soil respiration in the same four plantations were $2.20{\mu}molCO_2m^{-2}s^{-1}$, $1.90{\mu}molCO_2m^{-2}s^{-1}$, $2.47{\mu}molCO_2m^{-2}s^{-1}$ and $2.51{\mu}molCO_2m^{-2}s^{-1}$, and annual soil respiration were estimated $6.66tonCha^{-1}yr^{-1}$, $5.33tonCha^{-1}yr^{-1}$, $7.20tonCha^{-1}yr^{-1}$ and $7.25tonCha^{-1}yr^{-1}$, respectively. In this study area, Quercus acutissima-Robinia pseudoacacia plantation has a significant contribution to the role of carbon sink. However, the contribution of Pinus densiflora plantation was evaluated less. The results of this study can be used as the necessary data for tree planting and management in urban park.

키워드

참고문헌

  1. Braun-Blanquet, J.(1964) Pflanzensoziologie Grundzuge der Vegetation der Vegetation 3. Auf, Springer-Verlag, Wien, New York, 865pp.
  2. Davidson, E.A., E. Belk and R.D. Boone(1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in temperate mixed hardwood forest. Global Change Biology 4: 217-227. https://doi.org/10.1046/j.1365-2486.1998.00128.x
  3. Hwang, J.W.(2012) A Study on the Effectiveness of Carbon Dioxide Sequestration of Urban Park - The Case study of Seoul Forest Park -. Master's Thesis, Hanyang Univ., Korea, 79pp.
  4. Hwang, S.I.(2010) Low Carbon Land-Use Planning Strategies with Consideration for the Role of Carbon Sinks such as Vegetation and Soil II. Korea Environment Institute, pp. 26-30.
  5. Jo, H.K.(1999a) Carbon uptake and emissions in urban landscape, and the role of urban greenspace for several cities in Kangwon Province. Korean Institute of Landscape Architecture 27(1): 39-53. (in Korean with English abstract)
  6. Jo, H.K.(1999b) Energy consumption and carbon release from management of urban vegetation. Korean J. Environ. Ecol. 13(2): 101-108. (in Korean with English abstract)
  7. Kim, C.(2011) Research on Carbon Sequestration of Urban Park - In the Case of Nadry Park in Pangyo -. Master's Thesis, Kyungwon Univ., Korea, 64pp.
  8. Kim, I.H., K.S. Oh and S.H. Jung(2011) An analysis of relationship between carbon emission and urban spatial patterns. Korea Spatial Information System Society 19(1): 61-72. (in Korean with English abstract)
  9. Kim, S.B.(2008) Soil $CO_{2}$ Efflux and Leaf-Litter Decomposition in Pinus densiflora and Quercus variabilis Stands. Master's Thesis, Chonnam National Univ., Korea, 50pp.
  10. Kim, S.W.(2002) A Study on the Carbon Budget in Forest Ecosystems. Master's thesis, Kongju National Univ., Korea, 47pp.
  11. Knapp, A.K., S.L. Conard and J.M. Blair(1998) Determination of soil $CO_{2}$ flux from a subhumid glassland: Effects of fire and fire history. Ecological Application 4: 760-770.
  12. Koo, J.W., Y.H. Son, R.H. Kim and J. Kim(2005) A study on methods of separation soil respiration by source. Korean Journal of Agricultural and Forest Meteorology 7(1): 28-34. (in Korean with English abstract)
  13. Laclau, P.(2003) Biomass and carbon seqestration of ponderosa pion plantation and native Cypress forest in northwest Patagonia. Forest Ecology and Management 180: 317-333. https://doi.org/10.1016/S0378-1127(02)00580-7
  14. Lee, J.Y., D.K. Kim, H.Y. Won and H.T. Mun(2013) Organic carbon distribution and budget in the Pinus densiflora forest at Mt. Worak National Park. Korean J. Environ. Ecol. 27(5): 561-570. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2013.27.5.561
  15. Lee, K.J., H.Y. Won and H.T.Mun(2012) Contribution of root respiration to soil respiration for Quercus acutissima forest. Korean J. Environ. Ecol. 26(5): 780-786. (in Korean with English abstract)
  16. Lee, K.K.(2003) Sustainability Indicators of Greenspace in Apartment Sites. Ph. D. Dissertation, Univ. of Seoul, Korea, 159pp.
  17. Lee, Y.Y. and H.T. Mun(2001) A study on the soil respiration in a Quercus acutisima forest. Korean J. Environ. Ecol. 24(3): 141-147. (in Korean with English abstract)
  18. Liu, X., S. Wan, B. Su, D. Hui and Y. Luo(2002) Response of soil $CO_{2}$efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil 240: 213-223. https://doi.org/10.1023/A:1015744126533
  19. Moon, H.S.(2004) Siol respiration in Pinus densiflora, Quercus variabilis and Platycarya strobilacea stands in Jinju, Gyeongnam Province. Korean J. Environ. Ecol. 27(2): 87-92. (in Korean with English abstract) https://doi.org/10.5141/JEFB.2004.27.2.087
  20. Nakane K., T. Kohno and T. Horikoshi(1996) Root respiration rate before and just after clear-felling in a mature, deciduous, broad-leaved forest. Ecological Research 11: 111-119. https://doi.org/10.1007/BF02347678
  21. Park, E.J and K.Y. Kang(2010) Estimation of C storage and annual $CO_{2}$uptake by street trees in Gyeonggi-do. Korean J. Environ. Ecol. 24(5): 591-600. (in Korean with English abstract)
  22. Son, Y.H., G. Lee and J.Y. Hong(1994) Soil carbon dioxide evolution in three deciduous tree plantation. Korean Journal of Soil Science and Fertilizer 27(4): 290-295.
  23. Witkamp, M.(1969) Cycles of temperature and carbon dioxide evolution from the forest floor. Ecology 47: 492-494.
  24. Yu, Y.J.(2011) Characteristics of Soil Respiration on Major Forest Connumities in Mt. Jumbong, Mt. Nam, Mt. Jiri. Master's Thesis, Konkuk Univ., Korea, 57pp.
  25. http://kosis.kr