DOI QR코드

DOI QR Code

2D와 3D 디스플레이로 구현된 운전 시뮬레이션에서 운전자의 종적 차량통제 수행, 주관적 피로감 및 지각된 현실감의 차이

Differences in Driver's Longitudinal Vehicle Control, Subjective Fatigue, and Perceived Fidelity in 2D and 3D Display Driving Simulation

  • Park, Dong-Jin (Department of Psychology.Pusan National University) ;
  • Lee, Jaesik (Department of Psychology.Pusan National University)
  • 투고 : 2014.08.13
  • 심사 : 2014.10.13
  • 발행 : 2014.12.31

초록

본 연구에서는 2D 화면과 3D화면으로 각각 제시된 운전 시뮬레이션 환경에서 운전자의 종적 차량통제, 주관적 피로감 및 지각된 현실감에서의 차이를 비교하였다. 본 연구의 결과들을 요약하면 다음과 같다. 첫째, 실험참가자들은 미리 정해진 네 가지 수준의 목표속도(60, 80, 100 및 120km/h)를 유지할 때 3D 조건보다는 2D 조건에서, 그리고 목표속도가 낮을수록 목표속도에 비해 더 빠르게 운전하였고, 이러한 경향은 목표속도 조건과 상관없이 일정하였다. 둘째, 선행차량과의 차간거리 유지수행에 대한 분석 결과, 2D 조건에 비해 3D 조건에서 실험참가자들은 선행차량과 더 근접한 차간거리를 유지하며 주행하였는데, 특히 선행차량의 주행속도가 비교적 느렸던 조건(즉, 60km/h)에 비해 비교적 빨랐던 조건(즉, 80 및 100km/h)에서 이러한 경향이 두드러졌다. 셋째, 속도 유지 과제와 선행차량과의 차간거리 유지수행 모두에서 2D 조건에 비해 3D 조건에서 실험참가자들이 경험하는 피로감의 수준이 더 높았으나 주관적 현실감에 대한 평가에서는 두 가지 과제 모두에서 2D와 3D 조건에 따라 유의한 차이가 관찰되지 않았다.

In this study, drivers' longitudinal car control, subjective fatigue, and perceived fidelity were compared between 2D and 3D display driving simulation. The results can be summarized as followings. First, in all target speed conditions, the drivers tended to drove faster in 2D display condition than 3D display condition. Second, speed deviation from target speed increased as target speed decreased. Third, distances between the lead vehicle and the driver's vehicle were significantly reduced in the 3D display condition when the speeds of the lead vehicle were relatively fast(i. e., over 80km/h). Fourth, although the perceived fidelity was not significantly different between the two display conditions, subjective fatigue was higher in the 3D display condition than in the 2D display condition.

키워드

참고문헌

  1. Arjona, J. T. & Menéndez, J. M. (2004). Virtual reality devices in driving simulators: state of the art and ongoing developments at U.P.M. Proceeding of the workshop on the application of new technologies to driver training.
  2. Baird, J. C., & Biersdorf, W. R. (1967). Quantitative functions for size and distance judgments. Perception & Psychophysics, 2, 161-166. https://doi.org/10.3758/BF03210312
  3. Brown, I. D. (1965). Effect of a car radio on driving in traffic. Ergonomics, 8, 475-479. https://doi.org/10.1080/00140136508930828
  4. Chen, J. Y. C., Oden, R. V. N. & Drexler, J. M. (2010). Evaluation of stereoscopic displays for indirect-vision driving and robot teleoperation. In Proceedings of the 27th Army Science Conference.
  5. DeLucia, P. R., & Warren, R. (1994). Pictorial and motion-based depth information during active control of self-motion: Size-arrival effects on collision avoidance. Journal of Experimental Psychology: Human Perception and Performance, 20, 783-798. https://doi.org/10.1037/0096-1523.20.4.783
  6. Dewar, R.(1993). Warning: Hazardous road signs ahead. Ergonomics in Design, July. 26-31
  7. Dingus, T. A., McGehee, D. V., Manakkal, N., Jahns, S. K., Carney, C., & Hankey, J. M. (1997). Human factors field evaluation of automotive headway maintenance/collision warning devices. Human Factors, 39, 216-229. https://doi.org/10.1518/001872097778543930
  8. Eberts, R. E., & MacMillan, A. G. (1985). Miss perception of small cars. In R. E. Eberts & C. G. Eberts(Eds.), Trends in Ergonomics/Human Factors II(pp. 33-39), Amsterdam: North-Holland.
  9. Evans, L. (1991). Traffic safety and the driver(book review). Ergonomics, 36, 863-866.
  10. Gibson, J. J. (1950). The Perception of the Visual World. Boston, Houghton Mufflin.
  11. GDLS (2007). VTI Synopsis_GDLS in Projectlink C/MS HITWG, 29 Oct. 2007.
  12. Green, P.(1995) Automotive techniques. In J. Weimer(ed.), Research Techniques in Human Engineering, 165-201. San Diego, CA: Academic Press.
  13. Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. (2008). Vergence-accommodation conflicts hinder visual performance and cause visual fatigue, Journal of Vision, 8, 1-30.
  14. Iwashita, Y., Ishibashi, M., Miura, Y. & Yamamoto, M. (2011). Changes of Driver Behavior by Rear-end Collision Prevention Support System in Poor Visibility. Proceedings of First International Symposium on Future Active Safety Technology toward zero-traffic accident, Tokyo, Japan, September 5-9.
  15. Kemeny, A. & Panerai, F. (2003). Evaluating perception in driving simulation experiments. Cognitive sciences, 7(1), 31-37. https://doi.org/10.1016/S1364-6613(02)00011-6
  16. Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. International Journal of Aviation Psychology, 3(3), 203-220. https://doi.org/10.1207/s15327108ijap0303_3
  17. Kim, J. H., Matsui, Y., Hayakawa, S., Suzuki, T., Okuma, S., & Tsuchida, N. (2005). Acquisition and modeling of driving skills by using three dimensional driving simulator. IEICE Trans. Fundamentals, E88-A(3), 770-778. https://doi.org/10.1093/ietfec/e88-a.3.770
  18. Koskela, K., Nurkkala, V-M., Kalermo, J. & Jarvilehto, T. (2011). "Low-cost driving simulator for driver behavior research," In Proceedings of International Conference on Computer Graphics and Virtual Reality(CGVR-2011), Las Vagas, USA, July 18-21.
  19. Lambooij, M., IJsselsteijn, W., Fortuin, M., & Heynderickx, I. (2009). Visual discomfort and visual fatigue of steroscopic displays: a review. Journal of imaging science and technology. 53(3). 030201-1 - 030201-14. https://doi.org/10.2352/J.ImagingSci.Technol.2009.53.3.030201
  20. Lee, J. S. (2000). Analysis of driver's front-to-rear-end collision avoidance behavior using a driving simulation study. Korean journal of industrial and organizational psychology, 13(2), 53-73.
  21. Lee, J. D., McGehee, D. V., Brown, T. L., & Reyes, M. L. (2002). Collision Warning timing, drover distraction, and driver response to imminent rear-end collision in a high-fidelity driving simulator. Human factors, 44(2), 314-334. https://doi.org/10.1518/0018720024497844
  22. Li, H. C. (2009). Quantitative measurement and instrument of subjective visual fatigue measures for 3D displays induced fatigue(3차원 디스 플레이 유발 피로감을 정량적으로 측정할 수 있는 주관적인 시각적 피로감 측정방법 및 장치), Publication of unexamined patent applications, 10-2009-0079089.
  23. Panerai, F., Droulez, J., Kelada, J-M., Kemeny, A., Balligand, E., & Favre, B. (2001). Speed and safety distance control in truck driving: comparison of simulation and real-world environment. Proc. Driving simulation Conf. DSC 2000, Paris, France.
  24. Park, J. J., Li, H. C. O., & Kim, S. W. (2013). Screen disparity and size perception function of various 3D stimuli. Journal of Broadcast Engineering of Korea, 18(1), 60-76.
  25. Park, K. S. & Lee, D. H. (2003). Perception of depth and size in stereoscopic displays. Korean HCI Conference, 2003(2), 529-534.
  26. Schuemie, M. J., Straaten, P., Krijn, M. C., & Mast, A. (2001). Research on presence in VR: A survey. Cyberpsychology and Behavior, 4, 183-201. https://doi.org/10.1089/109493101300117884
  27. Singer, M., Ehrlich, J., Cinq-Mars, S., & Papin, J. (1995). Task Performance in Virtual Environments: Stereoscopic Versus Monoscopic Displays and Head-Coupling(Tech. Rep. 1034). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
  28. Stoner, H. A., Fischer, D. L., & Mollenhauer, M. Jr. (2011). Simulator and scenario factors influencing simulator sickness, in D. L. Fischer, M. Rizzo, J. K. Caird and J. D. Lee, Handbook of Driving Simulation for Engineering, Medicine, and Psychology, CRC Press, Taylor and Francis Group, New York.
  29. Summala, H. (1981). Driver/vehicle steering response latencies. Human Factors, 23, 683-692.
  30. Wasielewski, P. (1984). Speed as a measure of driver risk: Observed speeds versus driver and vehicle characteristics. Accident Analysis and Prevention, 16, 89-103. https://doi.org/10.1016/0001-4575(84)90034-4
  31. Wickens, C. D., Lee, J. D., Liu, Y., & Gordon-Becker, S. E.(2004). An Introduction to Human Factors Engineering, Person Education, Inc., Upper Saddle River, New Jersey.
  32. Wright, R. H. (1995). Virtual reality psychophysics: Forward and lateral distance, height and speed perceptions with a wide angle helmet display(ARI Technical Report 1025). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.