The Impact of Interdisciplinary Education on Technology and Society over Engineering Identities in Male and Female Students

기술과 사회에 관한 융합교육이 남녀학생의 공학 정체성에 미치는 영향

  • Kim, Hyomin (Division of General Studies, Ulsan National Institute of Science and Technology(UNIST)) ;
  • Kim, Ji-Hyung (School of Nano-Bioscience and Chemical Engineering, UNIST) ;
  • Kim, Jeongyeon (Division of General Studies, Ulsan National Institute of Science and Technology(UNIST)) ;
  • Kim, Gi-Jeong (School of Biological Science, UNIST) ;
  • Lim, Do-Yeon (School of Nano-Bioscience and Chemical Engineering, UNIST) ;
  • Song, Sungsoo (Department of Physics Education, Pusan National University)
  • 김효민 (울산과학기술대학교(UNIST) 기초과정부) ;
  • 김지형 (UNIST 나노생명화학공학부) ;
  • 김정연 (울산과학기술대학교(UNIST) 기초과정부) ;
  • 김기정 (UNIST 생명과학부) ;
  • 임도연 (UNIST 나노생명화학공학부) ;
  • 송성수 (부산대학교 물리교육과)
  • Received : 2014.09.18
  • Accepted : 2014.11.03
  • Published : 2014.11.27

Abstract

This paper examined the influence of interdisciplinary education on technology and society over engineering identities of male and female students. For this purpose, we analyzed survey and essays of UNIST students who took the course of in 2013. Favorable feeling toward engineers, satisfaction with future career as engineers, positive regards of engineers' contribution to society increased to a statistically significant level within the group of female students who took the course. Interestingly, male students also formed more positive engineering identities after taking the course. Gender difference in engineering identities, which was statistically significant within the control group of non-takers, disappeared within students who took the course. Both male and female students learned to perceive engineering as a goal-oriented and contextualized exercises that can materialize new social values. In conclusion, interdisciplinary education on technology and society can make positive impacts on students' formation of engineering identities and sense of commitment.

본 연구는 기술과 사회에 관한 융합교육이 공대 남녀학생들의 정체성에 미치는 영향을 설문조사와 과제물 내용분석을 통해 검토하였다. 기술과 사회의 상호작용에 대한 수업을 수강한 여학생 집단에서는 엔지니어에 대한 호감, 자신이 엔지니어가 될 것이라는 사실에 대한 만족감, 엔지니어의 사회적 공헌도에 대한 긍정적 평가가 모두 통계적으로 유의미하게 증가하였다. 또한 수강 남학생 집단에서도 비수강 남학생 집단에 비해 더욱 긍정적인 공학 정체성이 형성되었고, 수강 남학생 집단과 여학생 집단 사이 에서는 통계적으로 의미 있는 성차가 나타나지 않았다. 이와 함께 수강생들은 이미 개발된 의료 기술을 개선하기 위한 방안을 논의하면서, 기술의 발전 과정을 새로운 사회적 가치를 실현해가는 과정으로 보는 관점을 습득하였다. 기술과 사회에 관한 융합교육은 공대 남녀학생들로 하여금 엔지니어의 역할을 더 넓은 사회적 맥락 안에서 이해하도록 도우며, 이는 공학도로서의 자기 정체성 형성에 긍정적 영향을 미칠 수 있다.

Keywords

References

  1. 국가암정보센터 (2013). 자궁경부암. http://cancer.go.kr/mbs/cancer/jsp/cancer/cancer.jsp?cancerSeq=4877&menuSeq=4886&viewType=all&id= (접속일: 2013. 9. 1).
  2. 김지현 (2007). 국내 여성 화학공학 인력의 활용현황. NICE: 화학공학기술정보지, 25(2): 114-119.
  3. 정윤경, 오명숙, 김지현 (2008). 공대 여학생의 전공 관련 심리적 특성의 탐색. 공학교육연구, 11(4): 34-45.
  4. 한국여성과학기술인지원센터 (2012). 2012 여성과학기술인력 현황.
  5. Baker, S., Tancred, P. & Whitesides, S. (2002). Gender and graduate school: Engineering students confront life after the B. Eng. Journal of Engineering Education, 91(1): 41-47. https://doi.org/10.1002/j.2168-9830.2002.tb00671.x
  6. Casper, M. & Clarke, A. (1998). Making the Pap Smear into the `right tool' for the job: Cervical cancer screening in the USA, circa 1940-95. Social Studies of Science, 28(2): 255-290. https://doi.org/10.1177/030631298028002003
  7. Chachra, D., Kilgore, D., Loshbaugh, H. L., McCain, J. & Chen, H., (2008). Being and becoming: gender and identity formation of engineering students. Annual Conference Proceedings of the American Society of Engineering Education, Paper No. AC 2008-960.
  8. Foor, C., Walden, S. & Trytten, D. (2007). I wish that I belonged more in this whole engineering group: Achieving individual diversity. Journal of Engineering Education, 96(2): 103-115. https://doi.org/10.1002/j.2168-9830.2007.tb00921.x
  9. Largesen, V. A. (2007). The strength of numbers: Strategies to include women into computer science. Social Studies of Science, 37(1): 67-92. https://doi.org/10.1177/0306312706063788
  10. Lederman, M. (2005). Teaching science with the social studies of science for equity. Journal of Women and Minorities in Science and Engineering, 11(3): 257-72. https://doi.org/10.1615/JWomenMinorScienEng.v11.i3.40
  11. Margolis, J. & Fisher, A. (2003). Unlocking the Clubhouse: Women in Computing, Cambridge, MA: MIT Press.
  12. Pinch, T. & Bijker, W. (1984). The social construction of facts and artifacts. Social Studies of Science, 14(3): 399-441. https://doi.org/10.1177/030631284014003004
  13. Rosser. S. & Taylor, M. Z. (2008). Economic security, expanding women's participation in US science, Harvard International Review, 30(3): 20-24.
  14. Sible, J., Wilhelm, D., & Lederman M. (2006). Teaching cell and molecular biology for gender equity. CBE-Life Science Education, 5(3): 227-238. https://doi.org/10.1187/cbe.05-08-0096