DOI QR코드

DOI QR Code

A Study on the Temperature Characteristics at the Inlet and the Outlet Pipes of a Refrigerator Drain Condenser

냉장고 배출수 응축기 입출구 배관에서의 온도 특성에 관한 연구

  • Ha, Ji Soo (Department of Mechanical and Automotive Engineering, Keimyung University) ;
  • Kim, Tae Kwon (Department of Mechanical and Automotive Engineering, Keimyung University)
  • 하지수 (계명대학교 기계자동차공학과) ;
  • 김태권 (계명대학교 기계자동차공학과)
  • Received : 2014.11.10
  • Accepted : 2014.12.08
  • Published : 2014.12.31

Abstract

The present study was conducted to elucidate the characteristics of temperature at the inlet and outlet pipes of a refrigerator drain condenser and suggest the method to predict the temperature of the refrigerant at the inlet and outlet pipes of the drain condenser. For this purpose, a built in style refrigerator was installed in a constant temperature chamber to measure temperatures at the inlet and outlet pipes of the drain condenser. From the results of the present analysis, it could be seen that the measured temperatures changed from $37^{\circ}C$ to $46^{\circ}C$ and the actual refrigerant temperatures were higher than the measured temperatures with the difference magnitude of $8^{\circ}C$ to $22^{\circ}C$. The present study suggested that the temperatures of the refrigerator could be calculated with the measured temperatures by introducing curve fitting of the measured temperature. The predicted refrigerant temperatures by the present study had the accuracy within 6% error of the actual refrigerant temperatures.

본 연구는 냉장고의 배출수 응축기 입출구 배관에서의 온도 특성을 알아보고 이를 예측하는 방법을 정립하는 것을 목적으로 하였다. 이를 위해서 빌트인 냉장고를 항온항습챔버에서 운전하면서 배출수 응축기 입출구 배관에서 온도를 측정하였다. 본 연구의 실험을 통하여 측정된 온도는 $37^{\circ}C$에서 $46^{\circ}C$로 변하는데 실제 온도는 측정된 온도 보다 $8^{\circ}C$에서 $22^{\circ}C$ 만큼 크게 차이나는 것을 확인할 수 있었다. 본 연구에서는 이렇게 차이가 나는 원인을 파악하였으며 이는 배출수 응축기 입출구 배관이 냉장고 본체에 부착되어 이를 통한 열손실이 크기 때문임을 알았으며 측정된 온도 결과로부터 입출구 배관의 온도를 예측할 수 있는 방법을 제안하였다. 본 연구의 온도 계산 결과는 실제 냉매온도를 6% 오차범위의 정확도로 예측할 수 있음을 알았다.

Keywords

References

  1. O. Laguerre, S. Ben Amara, D. Flick, Experimental study of heat transfer by natural convection in a closed cavity: application in a domestic refrigerator, Journal of Food Engineering, 2005, Vol. 70, pp. 523-537. https://doi.org/10.1016/j.jfoodeng.2004.10.007
  2. O. Laguerre, S. Ben Amara, J. Moureh, D. Flick, Numerical simulation of air flow and heat transfer in domestic refrigerators, Journal of Food Engineering, 2007, Vol. 81, pp. 144-156. https://doi.org/10.1016/j.jfoodeng.2006.10.029
  3. O. Laguerre, D. Flick, Temperature prediction in domestic refrigerators: Deterministic and stochastic approaches, International Journal of Refrigeration, 2010, Vol. 33, pp. 41-51. https://doi.org/10.1016/j.ijrefrig.2009.09.014
  4. Wei-Han Tao, Hyi-Yu Sun, Simulation and experimental study on the air flow and heat loads of different refrigerator cabinet designs, Chemical Engineering Communication, 2001, Vol., No. 1, pp. 171-182.
  5. E. Vineyard, T. K. Stovall, K. E. Wilkes, and K. W. Childs, Superinsulation in Refrigerators and Freezers, For the "Recent Developments in Refrigerator and Freezers", ASHRAE Seminar, 1998.
  6. Wei-Han Tao, Chao-Ming Huang, Chuan-Liang Hsu, Jian-Yuan Lin, Performance study of an energy-efficient display case refrigerator, Chemical Engineering Communication, 2004, Vol. 191, pp. 550-565.
  7. Clito Afonso, Manuel Castro, Air infiltration in domestic refrigerators: The influence of the magnetic seals conservation, International Journal of Refrigeration, 2010, Vol. 33, pp. 856-867. https://doi.org/10.1016/j.ijrefrig.2009.12.007
  8. B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972.
  9. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Mcgraw Hill Book, New York, USA, 1980.
  10. R. H. S. Winterton, Where did the Dittus and Boelter equation come from?, Int. J. Heat and Mass Transfer, 1998, Vol. 41, pp. 809-810. https://doi.org/10.1016/S0017-9310(97)00177-4