DOI QR코드

DOI QR Code

로터리 킬른용 Low-NOx 다공노즐버너 개발을 위한 수치해석적 연구

Numerical Study to Develop Low-NOx Multi-nozzle Burner in Rotary Kiln

  • Ahn, Seok-Gi (Department of Mechanical Engineering, Pusan National University) ;
  • Kim, Jin-Ho (Department of Mechanical Engineering, Pusan National University) ;
  • Hwang, Min-Young (Department of Mechanical Engineering, Pusan National University) ;
  • Kim, Gyu-Bo (Pusan Clean Coal Center) ;
  • Jeon, Chung-Hwan (Department of Mechanical Engineering, Pusan National University)
  • 투고 : 2014.06.30
  • 심사 : 2014.12.04
  • 발행 : 2014.12.31

초록

공정효율 및 배기배출물 개선을 위해 로터리 킬른 버너 개발에 대한 연구는 지속적으로 이루어져 왔다. 본 연구에서는 COG(Coke Oven Gas)를 연료로 사용하는 철광석 소결용 로터리 킬른의 다공노즐버너 개발을 위해 일차공기 노즐 직경, 버너 당량비, 버너 중앙노즐과 주위노즐의 당량비 변화에 따른 화염 및 배기배출 특성에 대한 수치해석 연구를 수행하였다. 일차공기 노즐 직경이 증가함에 따라 각 동일 당량비에서 화염길이는 길어지고 $NO_x$ 배출도 증가하였으며, 버너 당량비가 증가함에 따라 화염길이와 $NO_x$ 배출이 증가하는 결과를 보였다. 버너 중앙노즐의 당량비 변화에 따라 $NO_x$ 배출에는 차이를 보였으며, 화염길이 및 킬른 내부 온도에는 큰 차이가 없었다. 본 연구를 통해 $D_2/D_1$가 1.33, 버너 당량비가 1.25이고 버너 중앙 노즐이 Rich인 조건이 킬른 내부 온도분포 및 $NO_x$ 배출량 기준을 만족하는 적절한 설계조건임을 제시하였다.

Rotary kiln burner has been developed continuously to improve process efficiency and exhaust emission. In this study, the characteristics of the flame and exhaust emission were numerically analyzed according to the diameter of primary air nozzle, equivalent ratio of burner, and equivalent ratio at center and side nozzle for development of multi-nozzle burner in the COG(Coke Oven Gas) rotary kiln for sintering iron ore. The results indicated that the flame length and $NO_x$ emission increase, as the diameter of primary air nozzle and equivalent ratio of burner increase. And according to the change of equivalent ratio at the center and the side of the nozzle, the flame length and average temperature in the kiln show very little change but the $NO_x$ emission shows obvious difference. In conclusion, the best design conditions which have satisfying flame length, average temperature and $NO_x$ emission are as follows: $D_2/D_1$ is 1.33, equivalent ratio of burner is 1.25 and center nozzle conditions are Rich.

키워드

참고문헌

  1. S. Yamaguchi, T. Fujii, N. Yamamoto, T. Nomura: "KOBELCO Pelletizing Process", KOBELCO TECHNOLOGY REVIEW, No.29, pp.61-64, (2010)
  2. Minjae Eeom, Taekjin Hahn, Hookyung Lee, Sangmin Choi: "Performance Analysis Modeling for Design of Rotary Kiln Reactors", J. Korean Soc. Combust., Vol.18, No.3, pp.9-23, (2013) https://doi.org/10.15231/jksc.2013.18.3.009
  3. Rainer H. Nobis: "Latest Rotary Kiln Burner Technology: Possibilities and Experiences", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, Vol.27, No.5, pp.798-806, (1991) https://doi.org/10.1109/28.90332
  4. Gary L. Borman, Kenneth W. Ragland: "Combustion Engineering", Mc Graw Hill Education, pp.135-137, (1998)
  5. 환경부: "대기오염물질의 배출허용기준", pp.20-23, (2014)
  6. Enviromental Protection Agency: "Nitrogen oxides(NOx), why and how they are controlled", pp.12-31, (1999)
  7. Rauf Razzaq, Chungshan Li, Suojiang Zhang: "Coke ove gas: Availability, properties, purification, and utilization in China", Fuel, Vol.113, pp.287-299, (2013) https://doi.org/10.1016/j.fuel.2013.05.070
  8. Sangmin Lee, Wonseok Choi, Kookyoung Ahn: "Experimental Study on the Combustion Characteristics of Syngas-Oxyfuel Diffusion Flames", Trans. of the Korean Hydrogen and New Energy Society, Vol.21, No.6, pp.553-560, (2010)
  9. Gunhong Kim, Yongmo Kim, Kookyoung Ahn: "Non-Adiabatic Presumed PDF Modeling for Combustion Processes of Turbulent Oxy-CH4 Flame", 30th KOSCO SYMPOSIUM, pp.67-72, (2005)
  10. S.C. Hill, L. Douglas Smoot: "Modeling of nitrogen oxides formation and destruction in combustion systems", Progress in Energy and Combustion Science, Vol.26, pp.417-458, (2000)
  11. Youngjun Lee, Minyoung Hwang, Gyubo Kim, Juhun Song, Youngjune Chang, Chunghwan Jeon: "Effect of Nozzle Distance and Angle in the Iron-ore Sintering Dual Burner on Flame Characteristics", Journal of Energy Engineering, Vol.19, No.3, pp.163-170, (2010)