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Implants have been widely used in restorative treatment for patients who have undergone 
head and neck cancer surgery. With the development of combination treatment of head 
and neck cancer, radiotherapy has been a common means of therapy. However, it could 
induce various changes in hard and soft tissues and reduce the success and survival rate of 
the implants. Some research, using either animal models or clinical studies, have shown that 
certain strategies could be used for improving the survival rate of implants. In this review, 
we discussed the changes in both hard and soft tissues, which may reduce the survival rate 
of the implants, and the proposed methods for improving the survival rate of patients af-
ter radiotherapy.
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INTRODUCTION

Combination therapy is always performed on patients with head and neck cancer. Ap-
proximately 60%–80% of patients receive radiotherapy after surgery [1]. To increase their 
quality of life, restorative treatment is necessary. Among the different restorative methods, 
implants are widely chosen for their good functional recovery and aesthetic effects [2]. 
However, radiotherapy leads to a considerable number of difficulties in implant treatment. 
For example, the tissue in the irradiated area usually leads to a reduction of the vascular 
portion and cells and to hypoxia [3-5]. These changes lead to the destruction of osteoblasts 
and impaired bone modelling and remodelling which even cause osteoradionecrosis (ORN) 
[6,7]. Meanwhile, the radiotherapy may cause reduced saliva secretion and an imbalance of 
the peri-implant flora [8]. All these factors increase the risk of implant failure. To solve this 
problem, many strategies have been used in clinical practice, and some have achieved ideal 
effects. This review mainly focuses on the success rate of implants, tissue changes after ra-
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diotherapy, and effective adjuvant therapy methods, including hy-
perbaric oxygen (HBO), osteogenic growth peptide (OGP), and bone 
morphogenetic protein (BMP). The aim is to provide a useful guide 
to improve the success rate of implants in head and neck cancer 
patients after radiotherapy.

SUCCESS RATE OF IMPLANTS IN PATIENTS 
WITH RADIOTHERAPY

Radiotherapy is an important factor linked to implant failure. 
Studies from both animal subjects and human patients indicate 
that an irradiated bone has a greater risk of implant failure than a 
nonirradiated bone. This increase in risk may be up to 12 times 
greater [9,10]. There is much variation in the success rate reported 
amongst these data. A success rate as high as 99% in the mandible 
was reported by Keller et al. [11] in patients who had received ra-
diotherapy, whereas rates as low as 70% were reported by Babin et 
al. [12]. A similar variation is seen in implants placed in the maxilla. 
The reported success rates vary from as high as 100% to as low as 
40%. Buddula et al. [13] analyzed 48 patients who had prior head 
and neck radiation and had 271 dental implants, and reported that 
the 3-year survival rate was 238 implants (87.8%). Similar research 
was performed by Mancha et al. [14]; according to them, the over-
all 5-year survival rate in irradiated patients was 92.6%. Irradiated 
patients had a marginally significantly higher implant loss than 
nonirradiated patients. More importantly, they reported that the 
5-year survival rate in the ORN group was only 48.3%. Recently, 
Linsen et al. [15] showed long-term results of implants following 
radical head and neck cancer surgery with adjuvant radiation ther-
apy, and the overall 1-, 5-, and 10-year survival rates of all implants 
were 96.6%, 96.6%, and 86.9%, respectively. Based on the results 
of the research mentioned above, it was concluded that radiother-
apy was the essential cause of implant failure. Irradiation can pro-
duce both early and late tissue changes. Early effects include those 
on the salivary glands, skin, and oral mucosa, whereas later effects 
involve bone changes leading to demineralization, fibrosis, increased 
susceptibility to infection, and finally, avascular necrosis [16-18]. 
Thus, the treatments against the changes in the soft and hard tis-
sues after radiotherapy are meaningful for the success of dental 
implants in patients with head and neck cancer.

CONSEQUENCES OF RADIATION-INDUCED 
CHANGES IN TISSUES

Both hard and soft tissues changed when the patients received 
radiotherapy. These changes are harmful to the restoration and the 
survival of implants. The radiotherapy could directly injure the re-
modeling system of the bone, including osteocytes, osteoblasts, and 
osteoclasts [19]. Meanwhile, it could also cause irradiation-induced 
vascular injury. Radiation injury to the fine vasculature of bone and 
its surrounding tissues first leads to hyperemia, followed by endar-
teritis, thrombosis, and a progressive occlusion and obliteration of 

small vessels, which would lead to a further cell number reduction 
and progressive fibrosis in bones [20,21]. All these changes further 
result in a significant loss of active osteoblasts and osteoclasts as 
well as periosteal fibrosis and the loss of remodeling elements.

The most severe potential complication of bone irradiation is 
ORN, which is considered to be an infectious process with compro-
mised vascularity and minimal regenerative capabilities [22]. It 
usually occurs in the mandible and causes chronic pain and surface 
ulceration. The incidence of ORN of the mandible varies from 5% 
to 15%, and the incidence of ORN of the maxilla is much lower. 
ORN is closely associated with the implantation failure rate [23]. 
Mancha et al. [14] studied 225 implants placed in 30 patients who 
had received radiotherapy, and reported that irradiated patients 
had a marginally significantly higher implant loss than nonirradi-
ated patients. The 5-year survival rate in the ORN group was 48.3% 
and that in the non-ORN group was 92.3%, with a statistically sig-
nificant difference between both groups.

Besides the bones, the condition of the periodontium is directly 
related to the success and survival rate of the implants [24]. The 
cells and the vascular portion of the periodontal membrane de-
creased and the periodontal space widened after the patients re-
ceived irradiation. The radiation-related changes in the cementum 
and the periodontal ligament may induce infection and increase 
the risk of hyposalivation, plaque accumulation, and the shift of 
oral microflora [25,26]. The effects of radiotherapy on the peri-
odontium result in an increased risk of periodontal attachment 
loss as well as an increased risk of ORN development [27,28]. 

The change in salivary glands is another important factor that 
affects the survival rate of the implants. Radiotherapy could lead 
to a chronic salivary gland dysfunction, which is characterized by a 
reduced salivary flow and changes in the saliva composition [29]. 
The affected patients suffered from xerostomia, oral mucositis, dif-
ficulty in speaking, increase in oral pathologies, difficulty in chew-
ing and swallowing food, and malnutrition due to a loss of the 
salivary flow [30,31]. Overall, these changes would destroy the en-
vironment of the oral cavity and ultimately, decrease the survival 
rate of the implants.

Radiotherapy causes different levels of damage to oral health. In 
addition to the changes in the hard and soft tissues in the oral 
cavity mentioned above, the damage of the oral mucosa, radiation 
caries, periodontal disease, dysfunction of muscles and joints, and 
imbalance of the nutritional status would all increase the risk of 
implant failure [32-35]. Thus, prevention and treatment consider-
ations for irradiated patients are essential to improve the implant 
survival rate.

STRATEGIES FOR IMPROVING THE SURVIVAL 
RATE OF IMPLANTS IN IRRADIATED PATIENTS 
WITH HEAD AND NECK CANCERS

Hyperbaric oxygen
HBO therapy is a treatment modality in which a person breathes 
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100% O2 while exposed to increased atmospheric pressure [36]. It 
is the most studied and the most widely used therapy for improv-
ing the implant survival rate after radiotherapy adjuvant therapy. 
HBO therapy has been successfully used in the treatment of several 
disorders caused by tissue hypoxia, due to the extraoxygen supply 
to the tissues that it enables. For the bones after radiotherapy, HBO 
can cooperate with the basic fibroblast growth factor (bFGF) and 
protect the bone and bone marrow [37]. For the tissue damage af-
ter radiotherapy, HBO can improve the implant survival rate and 
achieve the ideal efficacy [38]. Granstrom et al. [39] retrospectively 
evaluated the implant survival of 631 implants installed in irradi-
ated cancer patients over a 25-year period. The implant failure rate 
in HBO-treated patients was 8.5%, compared with the 40.2% of 
the non-HBO-treated group. In mouse models, it was found that 
HBO had significant effects on the treatment of irradiated tissues 
[40]. Through the study of histology and morphology, they found 
that HBO treatment could increase the formation of bone trabecu-
lar and bone exposure. In the irradiation region, HBO could signifi-
cantly increase the velocity of blood flow. In addition, HBO is a good 
application for the treatment of ORN, hypo-salivation, radiation 
caries, and pain initiated by radiotherapy. Thus, HBO therapy can 
be considered an effective therapy for the prevention or treatment 
of the long-term complications of radiation therapy [41,42].

However, it has been insisted that HBO is not necessary in im-
proving the survival rate of dental implants placed in irradiated 
bone because the incidence of ORN was very low (approximately 
5%) and ideal survival rate of the implants could be achieved with 
prolonged healing period in previous studies. More importantly, 
HBO has some contraindications, including optic neuritis, pulmo-
nary disease, claustrophobia, and epilepsy [43,44]. Correspondingly, 
the use of HBO can cause some complications, such as dysfunction 
of the eustachian tube, periosteal rupture, seizures, and decom-
pression sickness [45,46]. In summary, HBO therapy has the poten-
tial to improve the implantation survival rate of patients received 
radiotherapy; however, the timing and indications for the use of 
HBO therapy should be in accord with specific conditions clinically.

Bone morphogenetic proteins
BMPs are a group of growth factors known as cytokines and 

metabologens. Originally discovered by their ability to induce the 
formation of bone and cartilage, BMPs are now considered to con-
stitute a group of pivotal morphogenetic signals, orchestrating tis-
sue architecture throughout the body. These molecules primarily 
stimulate the differentiation of mesenchymal stem cells into chon-
droblasts and osteoblasts; they may contribute to the improvement 
in periodontal regenerative outcomes and are important for bone 
formation and renewal [47]. Wurzler et al. [48] reported that BMP 
had potential applications in reconstructive craninomaxillofacial 
surgery after irradiation for it could overcome the radiation-in-
duced impairment of calvarial repair. Springer et al. [49] studied 
the application of BMP in the irradiated mandible and found that 
BMP could cooperate with bFGF and result in predictable bone 

generation. Other studies also identified that BMP could enhance 
the generation and repair of bones after radiotherapy [50,51].

In clinical applications, BMPs for clinical use are produced using 
recombinant DNA technology (recombinant human BMPs [rhBMPs]). 
rhBMP-2 and rhBMP-7 have been shown in clinical studies to be 
beneficial in the treatment of a variety of bone-related conditions, 
including spinal fusions and nonunions. In 2001, the U.S. Food and 
Drug Administration (FDA) approved rhBMP-7 (aka OP-1; Stryker 
Biotech, Hopkinton, MA, USA) for a humanitarian device exemp-
tion as an alternative to autograft in long bone nonunions. In 2004, 
the humanitarian device exemption was extended as an alterna-
tive to autograft for posterolateral fusion [52]. In 2002, rhBMP-2 
(Infuse, Medtronic Inc., Minneapolis, MN, USA) was approved for 
anterior lumbar interbody fusions with a lumbar fusion device. In 
2008, it was approved to repair posterolateral lumbar pseudarthro-
sis and open tibia shaft fractures with intramedullary nail fixation. 
In these products, BMPs are delivered to the site of the fracture by 
being incorporated into a bone implant and released gradually to 
allow bone formation, as the growth stimulation by BMPs must be 
localized and sustained for some weeks. The BMPs are eluted through 
a purified collagen matrix that is implanted in the site of the frac-
ture. rhBMP-2 helps to grow bones better than any other rhBMP; 
therefore, it is considerably more widely used clinically. BMPs could 
promote and accelerate the new bone formation and maturation 
in the implant-bone interface [53,54]. Therefore, the use of the 
exogenous BMP bone tissue may improve the local content and 
the activity of BMP, and improve the implant survival rate after 
radiotherapy. Bovine BMP (bBMP) has been shown to increase the 
rate of osseointegration around cylindrical uncoated endosseous 
implants, as evidenced histomorphometrically four weeks after 
implantation in a dog model. The results revealed abundant lamel-
lar bone formation around bBMP-coated implants. This bone was 
found adjacent to the implant threads and frequently entered the 
implant holes [55]. In a recent study, combined adenovirus-medi-
ated human BMP-2 gene-modified bone marrow stromal cells with 
allograft enhanced the defect healing and improved the strength 
of implant fixation with osseointegration in a 3-mm bone defect 
around a titanium alloy implant [56]. 

Osteogenic growth peptide
The OGP is a 14-mer bone cell mitogen that increases bone for-

mation and trabecular bone density and stimulates fracture heal-
ing. The overexpression of OGP has a markedly increased peak bone 
mass [57]. OGP is present in mammalian serum in micromolar con-
centrations mainly complexed to 2-macroglobulin. Upon its disso-
ciation from the complex, it is proteolytically activated yielding 
the mitogenic C-terminal pentapeptide OGP [58]. In addition to 
stimulating bone formation, OGP potently enhances hematopoie-
sis. We have reported recently that the mitogenic action of OGP 
involves the activation of a Gi protein-MAP kinase signaling path-
way [59]. Gurevitch et al. [60] reported that OGP could increase 
blood and bone marrow cellularity and enhance the engraftment 
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of bone marrow transplants in irradiated mice. Other animal ex-
periments showed that OGP could induce the transformation of 
cartilage callus into bone callus at the fracture site, promote the 
differentiation and maturation of the bone cells around implants, 
and accelerate the process of osseointegration [61,62]. However, at 
present, the research on OGP is still limited in terms of animal ex-
periments, and the clinical applications of OGP need further study.

CONCLUSION

For patients with head and neck cancers, both combination 
therapy for the tumor and the follow-up implantation for func-
tional reconstruction are necessary. Although radiotherapy is com-
monly applied to the cancerous tumor as an important means of 
therapy, it can cause various changes in both hard and soft tissues. 
All these changes are harmful to implant survival. Based on recent 
studies, some strategies, such as the use of HBO, BMPs, and OGP, 
might improve the implant survival rate (Fig. 1). However, every 
method has its limitations, and the applications and risks of differ-
ent methods should be discussed further. Thus, the exploration of 
suitable ways to improve the retention of implants after radio-
therapy needs further study.
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