DOI QR코드

DOI QR Code

Effect of Epoxy Mixed with Nafion Solution as an Anode Binder on the Performance of Microbial Fuel Cell

산화전극 결합제로서 나피온용액에 혼합된 에폭시가 미생물연료전지의 성능에 미치는 영향

  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Kim, Dae-Seop (KORBI, Co. Ltd.) ;
  • Woo, Jung-Hui (Department of Environmental Engineering, Korea Maritime and Ocean University)
  • Received : 2013.11.04
  • Accepted : 2013.12.09
  • Published : 2014.01.31

Abstract

The composite anodes of exfoliated graphite (EG) and multiwall carbon nanotube (MWCNT) were fabricated by using the binders with different content of epoxy in Nafion solution. The influence of the epoxy content in the anode binder on the performance of microbial fuel cell (MFC) was examined in a batch reactor. With the increase in the epoxy content in the anode binder, increase in physical binding force was observed, but at the same time an increase in the internal resistance of MFC was also observed. This was due to the increase in activation and ohmic resistance. For the anode binder without epoxy, the maximum power density was $1,892mW/m^2$, but a decrease in maximum power density was observed with the increase in the epoxy content in the anode binder. With the epoxy content of 50% in the anode binder, a decrease in the maximum power density to $1,425mW/m^2$ was observed, which about 75.3% of the anode binder without epoxy is. However, the material consisting of the same amount of epoxy and Nafion solution is a good alternative for anode binder in terms of durability and economics of MFC.

팽창흑연과 탄소나노튜브를 이용한 복합 산화전극을 나피온용액에 다양한 비율로 에폭시를 혼합한 결합제를 이용하여 제작하였으며, 산화전극 결합제에 함유된 에폭시량이 미생물연료전지의 성능에 미치는 영향을 회분식 실험을 통하여 조사하였다. 산화전극 결합제에 에폭시의 함량이 증가함에 따라 산화전극 구성 물질들의 물리적 부착력은 점차 증가하였으나, 활성화저항과 오옴저항의 증가로 인한 내부저항이 증가하였다. 산화전극 결합제로 에폭시를 혼합하지 않고 나피온용액 만을 사용한 대조구의 경우 $1,892mW/m^2$에 달하였으나 산화전극 결합제에 에폭시 함량이 증가함에 따라 미생물연료전지의 최대전력밀도는 점차 감소하였다. 산화전극 결합제에 에폭시함량이 50%일 때 최대전력밀도는 $1,425mW/m^2$로서 대조구의 75.3%까지 감소하였으나, 고가의 나피온용액 사용량을 감소시키고 산화전극 결합제의 물리적 부착력을 높일 수 있다는 측면에서 고려할 때 나피온용액과 에폭시를 같은 비율로 혼합한 물질은 산화전극결합제로서의 좋은 대안이 될 수 있는 것으로 판단된다.

Keywords

References

  1. Logan, B., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaeey, K., "Microbial Fuel Cells: Methodology and Technology," Environ. Sci. Technol., 40(17), 5181-5192(2006). https://doi.org/10.1021/es0605016
  2. Kim, B. H., Chang, I. S. and Gadd, G. M., "Challenges in microbial fuel cell development and operation," Appl. Microbiol. Biotechnol., 76(3), 485-494(2007). https://doi.org/10.1007/s00253-007-1027-4
  3. Song, Y. C., Yoo, K. S. and Lee, S. K., "Surface floating air cathode microbial fuel cell with horizontal flow for continuous power production from wastewater," J. Power Sources, 195(19), 6478-6482(2010). https://doi.org/10.1016/j.jpowsour.2010.04.041
  4. Hamelers, H. V. M., Heijne, A. T., Sleutels, T. H. J. A., Jeremiasse, A. W., Strik, D. P. B. T. B., Buisman, C. J. N., "New applications and performance of bioelectrochemical systems," Appl. Microbiol. Biotechnol., 85(6), 1673-1685(2010). https://doi.org/10.1007/s00253-009-2357-1
  5. Song, Y. C., Woo, J. H. and Yoo, K. S., "Materials for microbial fuel cell : electrodes, separator and current collector," J. Kor. Soc. Environ. Eng., 31(9), 579-586(2009).
  6. Wei, J., Liang, P. and Huang, X., "Recent progress in electrodes for microbial fuel cells," Bioresour. Technol., 102(20), 9335-9344(2009).
  7. Zhou, M., Chi, M., Luo, J., He, H. and Jin, T., "An overview of electrode materials in microbial fuel cells," J. Power Sources, 196(10), 4427-4435(2011). https://doi.org/10.1016/j.jpowsour.2011.01.012
  8. Kumar, G. G., Sarathi, V. G. S. and Nahm, K. S., "Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells," Biosens. Bioelectron., 43(15), 461-475(2013). https://doi.org/10.1016/j.bios.2012.12.048
  9. Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R. and Rousset, A., "Specific surface area of carbon nanotubes and bundles of carbon nanotubes," Carbon, 39(4), 507-514(2001). https://doi.org/10.1016/S0008-6223(00)00155-X
  10. Miao, M., "Electrical conductivity of pure carbon nanotube yarns," Carbon, 49(12), 3755-3761(2011). https://doi.org/10.1016/j.carbon.2011.05.008
  11. Zhang, Y., Mo, G., Li, X., Zhang, W., Zhang, J., Ye, J., Huang, X. and Yu, C., "A graphene modified anode to improve the performance of microbial fuel cells," J. Power Sources, 196(13), 5402-5407(2011). https://doi.org/10.1016/j.jpowsour.2011.02.067
  12. Song, Y. C., Choi, T. S., Woo, J. H., Yoo, K. S., Chung, J. W., Lee, C. Y. and Kim, B. G., "Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells," J. Appl. Electrochem., 42(6), 391-398(2012). https://doi.org/10.1007/s10800-012-0410-8
  13. Rabaey, K. and Verstraete, W., "Microbial fuel cells: novel biotechnology for energy generation," Trends Biotechnol., 23(6), 291-298(2005). https://doi.org/10.1016/j.tibtech.2005.04.008
  14. Lee, W. Y., Wee, D. and Ghoniem, A. F., "An improved onedimensional membrane-electrode assembly model to predict the performance of solid oxide fuel cell including the limiting current density," J. Power Sources, 186(2), 417-427 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.009
  15. Xuan, J., Leung, D. Y. C., Leung, M. K. H., Wang, H. and Ni, M., "Chaotic flow-based fuel cell built on counter-flow microfluidic network: Predicting the over-limiting current behavior," J. Power Sources, 196(22), 9391-9397(2011). https://doi.org/10.1016/j.jpowsour.2011.06.065

Cited by

  1. Improvement of Anodic Performance by Using CTP Binder Containg Nickel vol.37, pp.9, 2015, https://doi.org/10.4491/KSEE.2015.37.9.499
  2. Surface Modification of a Graphite Fiber Fabric Anode for Enhanced Bioelectrochemical Methane Production vol.30, pp.8, 2016, https://doi.org/10.1021/acs.energyfuels.6b00959