References
- Logan, B., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaeey, K., "Microbial Fuel Cells: Methodology and Technology," Environ. Sci. Technol., 40(17), 5181-5192(2006). https://doi.org/10.1021/es0605016
- Kim, B. H., Chang, I. S. and Gadd, G. M., "Challenges in microbial fuel cell development and operation," Appl. Microbiol. Biotechnol., 76(3), 485-494(2007). https://doi.org/10.1007/s00253-007-1027-4
- Song, Y. C., Yoo, K. S. and Lee, S. K., "Surface floating air cathode microbial fuel cell with horizontal flow for continuous power production from wastewater," J. Power Sources, 195(19), 6478-6482(2010). https://doi.org/10.1016/j.jpowsour.2010.04.041
- Hamelers, H. V. M., Heijne, A. T., Sleutels, T. H. J. A., Jeremiasse, A. W., Strik, D. P. B. T. B., Buisman, C. J. N., "New applications and performance of bioelectrochemical systems," Appl. Microbiol. Biotechnol., 85(6), 1673-1685(2010). https://doi.org/10.1007/s00253-009-2357-1
- Song, Y. C., Woo, J. H. and Yoo, K. S., "Materials for microbial fuel cell : electrodes, separator and current collector," J. Kor. Soc. Environ. Eng., 31(9), 579-586(2009).
- Wei, J., Liang, P. and Huang, X., "Recent progress in electrodes for microbial fuel cells," Bioresour. Technol., 102(20), 9335-9344(2009).
- Zhou, M., Chi, M., Luo, J., He, H. and Jin, T., "An overview of electrode materials in microbial fuel cells," J. Power Sources, 196(10), 4427-4435(2011). https://doi.org/10.1016/j.jpowsour.2011.01.012
- Kumar, G. G., Sarathi, V. G. S. and Nahm, K. S., "Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells," Biosens. Bioelectron., 43(15), 461-475(2013). https://doi.org/10.1016/j.bios.2012.12.048
- Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R. and Rousset, A., "Specific surface area of carbon nanotubes and bundles of carbon nanotubes," Carbon, 39(4), 507-514(2001). https://doi.org/10.1016/S0008-6223(00)00155-X
- Miao, M., "Electrical conductivity of pure carbon nanotube yarns," Carbon, 49(12), 3755-3761(2011). https://doi.org/10.1016/j.carbon.2011.05.008
- Zhang, Y., Mo, G., Li, X., Zhang, W., Zhang, J., Ye, J., Huang, X. and Yu, C., "A graphene modified anode to improve the performance of microbial fuel cells," J. Power Sources, 196(13), 5402-5407(2011). https://doi.org/10.1016/j.jpowsour.2011.02.067
- Song, Y. C., Choi, T. S., Woo, J. H., Yoo, K. S., Chung, J. W., Lee, C. Y. and Kim, B. G., "Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells," J. Appl. Electrochem., 42(6), 391-398(2012). https://doi.org/10.1007/s10800-012-0410-8
- Rabaey, K. and Verstraete, W., "Microbial fuel cells: novel biotechnology for energy generation," Trends Biotechnol., 23(6), 291-298(2005). https://doi.org/10.1016/j.tibtech.2005.04.008
- Lee, W. Y., Wee, D. and Ghoniem, A. F., "An improved onedimensional membrane-electrode assembly model to predict the performance of solid oxide fuel cell including the limiting current density," J. Power Sources, 186(2), 417-427 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.009
- Xuan, J., Leung, D. Y. C., Leung, M. K. H., Wang, H. and Ni, M., "Chaotic flow-based fuel cell built on counter-flow microfluidic network: Predicting the over-limiting current behavior," J. Power Sources, 196(22), 9391-9397(2011). https://doi.org/10.1016/j.jpowsour.2011.06.065
Cited by
- Improvement of Anodic Performance by Using CTP Binder Containg Nickel vol.37, pp.9, 2015, https://doi.org/10.4491/KSEE.2015.37.9.499
- Surface Modification of a Graphite Fiber Fabric Anode for Enhanced Bioelectrochemical Methane Production vol.30, pp.8, 2016, https://doi.org/10.1021/acs.energyfuels.6b00959