DOI QR코드

DOI QR Code

Estimation of Corn Growth by Radar Scatterometer Data

  • Kim, Yihyun (Climate Change and Agroecology Division, National Academy of Agricultural Science) ;
  • Hong, Sukyoung (Climate Change and Agroecology Division, National Academy of Agricultural Science) ;
  • Lee, Kyoungdo (Climate Change and Agroecology Division, National Academy of Agricultural Science) ;
  • Na, Sangil (Climate Change and Agroecology Division, National Academy of Agricultural Science) ;
  • Jung, Gunho (Upland Crop Research Division, National Institute of Crop Science, RDA)
  • 투고 : 2014.03.04
  • 심사 : 2014.03.21
  • 발행 : 2014.04.30

초록

Ground-based polarimetric scatterometers have been effective tools to monitor the growth of crop with multi-polarization and frequencies and various incident angles. An important advantage of these systems that can be exploited is temporal observation of a specific crop target. Polarimetric backscatter data at L-, C- and X-bands were acquired every 10 minutes. We analyzed the relationships between L-, C- and X-band signatures, biophysical measurements over the whole corn growth period. The Vertical transmit and Vertical receive polarization (VV) backscattering coefficients for all bands were greater than those of the Horizontal transmit and Horizontal receive polarization (HH) until early-July, and then thereafter HH-polarization was greater than VV-polarization or Horizontal transmit and Vertical receive polarization (HV) until the harvesting stage (Day Of Year, DOY 240). The results of correlation analysis between the backscattering coefficients for all bands and corn growth data showed that L-band HH-polarization (L-HH) was the most suited for monitoring the fresh weight ($r=0.95^{***}$), dry weight ($r=0.95^{***}$), leaf area index ($r=0.86^{**}$), and vegetation water content ($r=0.93^{***}$). Retrieval equations were developed for estimating corn growth parameters using L-HH. The results indicated that L-HH could be used for estimating the vegetation biophysical parameters considered here with high accuracy. Those results can be useful in determining frequency and polarization of satellite Synthetic Aperture Radar stem and in designing a future ground-based microwave system for a long-term monitoring of corn.

키워드

참고문헌

  1. Brakke, T.W., E.T. Kanemasu., J.L. Steine., F.T. Ulaby, and E. Wilson. 1981. Microwave response to canopy moisture, leaf area index, and dry weight of wheat, corn and sorghum. Remote Sens. Environ. 11:207-220. https://doi.org/10.1016/0034-4257(81)90020-1
  2. Bouvet, A. and T. Le Toan. 2011. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong river delta. Remote Sens. Environ. 115(4):1090-1101. https://doi.org/10.1016/j.rse.2010.12.014
  3. Chen, C. and H. McNairn. 2006. A neural network integrated approach for rice crop monitoring. Int. J. Remote Sens. 27:1367-1393. https://doi.org/10.1080/01431160500421507
  4. Denmead, O.T. and R.H. Shaw. 1960. The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agron. J. 52(5):272-274. https://doi.org/10.2134/agronj1960.00021962005200050010x
  5. Inoue, Y., T. Kurosu., H. Maeno, S. Uratsuka., T. Kowu., K. Dabrowska-Zielinska, and J. Qi. 2002. Season-long daily measurements of multi-frequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables. Remote Sens. Environ. 81:194-204. https://doi.org/10.1016/S0034-4257(01)00343-1
  6. Kim, S., B. Kim., Y. Kong, and Y.S. Kim. 2000. Radar backscattering measurements of rice crop using X-band scatterometer. IEEE Trans. Geosci. Remote Sens. 38(3):1467-1471. https://doi.org/10.1109/36.843044
  7. Kim, Y.H., S.Y. Hong, and H.Y. Lee. 2009. Estimation of paddy rice growth parameters using L, C, X-bands polarimetric scatterometer. Korean J. Remote Sens. 25(1):31-44. https://doi.org/10.7780/kjrs.2009.25.1.31
  8. Kim, Y.H., S.Y. Hong., H.Y. Lee, and J.E. Lee. 2011. Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement. Korean J. Remote Sens. 27(2):191-201. https://doi.org/10.7780/kjrs.2011.27.2.191
  9. Kim, Y.H., S.Y. Hong, K.D. Lee, and S.Y. Jang. 2013. Estimation of wheat growth using a microwave scatterometer. Korean J. Soil Sci. Fert. 46(1):23-31. https://doi.org/10.7745/KJSSF.2013.46.1.023
  10. Kurosu, T., M. Fujita, and K. Chiba. 1995. Monitoring of rice crop growth from space using the ERS-1 C-band SAR. IEEE Trans. Geosci. Remote Sens. 33(4):1092-1096. https://doi.org/10.1109/36.406698
  11. Le Toan, T., H. Laur., E. Mougin, and A. Lopes. 1989. Multitemporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images. IEEE Trans. Geosci. Remote Sens. 27(6):709-718. https://doi.org/10.1109/TGRS.1989.1398243
  12. Le Toan, T., F. Ribbes., L. Wang., F, Ding., N. K., J.A Kong., M. Fujita, and T. Kurosu. 1997. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 35:41-56. https://doi.org/10.1109/36.551933
  13. Lin, H., J. Chen., Z. Pei., S. Zhang, and X. Hu. 2009. Monitoring sugarcane growth using ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens. 47(8):2572-2580. https://doi.org/10.1109/TGRS.2009.2015769
  14. Paris, J.F. 1986. The effect of leaf size on the microwave backscattering by corn. Remote Sens. Environ. 19:81-95. https://doi.org/10.1016/0034-4257(86)90042-8
  15. Shao, Y., X, Fan., H, Lin., J, Xiao., S, Ross., B, Brisco., R, Brown, and G. Staples. 2001. Rice monitoring and production estimation using multi-temporal RADARSAT. Remote Sens. Environ. 76(3):310-325. https://doi.org/10.1016/S0034-4257(00)00212-1
  16. Ulaby, F.T., M.K. Moore, and A.K. Fung. 1982. Microwave Remote Sensing. Active and Passive, Artech House Inc., Norwood, MA, USA.
  17. Ulaby, F.T., C.T. Allen., G. Eger, and E.T. Kanemasu. 1984. Relating the microwave backscattering coefficient to leaf area index. Remote Sens. Environ. 14:113-133. https://doi.org/10.1016/0034-4257(84)90010-5
  18. Ulaby, F.T. and C. Elachi. 1990. Radar Polarimetry for Geoscience Applications. Artech House Inc., Norwood, MA, USA.