DOI QR코드

DOI QR Code

A Study on the Breakwater Characteristics considering Seismic Magnitude

지진규모를 고려한 방파제 특성에 관한 연구

  • Jeong, Jin-Ho (Department of Civil Engineering, Pukyong National University) ;
  • Lee, Kwang-Yeol (Department of Division of Architectuire & Civil Engineering, Dongseo University) ;
  • Lim, Chang-Kyu (Department of Civil Engineering, Pukyong National University)
  • Received : 2014.02.14
  • Accepted : 2014.03.22
  • Published : 2014.03.30

Abstract

Busan is located at the mouth of Nakdong River and if an earthquake occurs, it is very likely that the damage by the earthquake will be worse as liquefaction can happen in the sand layer, builtup soil, and landfill ground due to amplification in the lower sedimentary layer that is well developed in the river mouth. Therefore, this study first examined the possibility of liquefaction in the replaced sand layer under breakwater using 14 earthquakes in 5.6-7.9 scale and artificial earthquakes including the seismic wave suggested in the standard specifications for seismic design of ports and fishing port facilities to evaluate the stability of breakwater which is the primary protective structure for port facilities against earthquakes. Second, analysis on characteristics of the seismic energy and acceleration response spectrum by size of earthquake was performed to suggest the most appropriate size of seismic wave for the condition in Korea. Third, finite element analysis was performed using the suggested seismic wave to study the characteristics of earthquake by finding the dynamic lateral displacement of breakwater and verifying the stability of structure and the displacement and forces occurring at geotextile. Results of the study showed that the possibility of liquefaction in the landfill and replaced sand layer, the dynamic lateral displacement of breakwater, and changes of geotextile are greatly affected by the subsurface ground (replaced sand layer).

부산지역은 낙동강 하구에 위치하여 퇴적층, 매립층 등이 매우 잘 발달되어 있어 지진이 발생한다면 이러한 지층 등에서 증폭현상이 나타나 모래층과 성토층 및 매립지반에 액상화 발생 가능성이 매우 커진다. 만약 액상화가 발생한다면 지진에 의한 피해는 크게 가중되어 막대한 피해를 야기 시키게 된다. 그러므로 본 연구는 지진 발생 시 항만시설의 1차 보호구조물인 부산항 신항 방파제의 안정성을 검토하기 위하여, 국내 내진설계기준과 항만 및 어항 설계기준을 바탕으로 인공지진과 국내에 널리 사용되는 장주기 지진파와 단주기 지진파인 포함하여 지진규모 5.6~7.9 수준의 지진 13개 등을 사용하여 첫 번째로 여러 제시된 액상화 평가방법을 이용하여 방파제 하부 치환모래층의 액상화 발생 가능성을 검토하여 안정성을 평가하고, 두 번째 지진규모에 따른 지진에너지와 가속도 응답스펙트럼에 대한 특성분석을 수행하여 설계기준에 근접하는 지진파 제시하며, 세 번째 제시된 지진파를 이용하여 방파제의 동적 안정성을 검토하기 위해 유한요소해석을 실시하여 구조물의 안정성을 확인하고, Geotextile에 발생하는 변위 및 인장력의 변화에 대하여 확인하였다. 따라서 본 연구결과 방파제 하부 치환모래층에 대한 액상화 발생가능성과 방파제의 동적수평변위 및 Geotextile의 변화는 하부지반(치환모래층)에 의해 매우 큰 영향을 받는 것으로 나타났다.

Keywords

References

  1. Blake, T. F. (1996), Personal Communication from T. L. Youd.
  2. Busan Port Construction Office (2007), A Basis Reinforcement Construction Investigation Services Soil Survey Report for Breakwater in Busan new port, Busan Regional Maritime Affairs and Port Administration.
  3. Busan Port Construction Office (2009), A Detailed Design Research and Experiment Report for Breakwater in Busan new port, Busan Regional Maritime Affairs and Port Administration.
  4. Eurocode 8: Design of structures for earthquake resistance - Part 5: Foundations, retaining structures and geotechnical aspects. EN 1998-5:2010(E).
  5. Kim Soo-Il (1998), "Assessment and Remediation for Liquefaction in Korea", Journal of THE KOREAN GEOTECHNICAL SOCIETY, Vol.1998, No.3, pp.3-30.
  6. Park Keun-Bo, Sim Jae-Uk, Cha Seung-Hun, Kim Soo-Il (2008), "A Study on the Dynamic Lateral Displacements of Caisson Quay Walls in Moderate Earthquake Regions", Journal of THE KOREAN GEOTECHNICAL SOCIETY, Vol.24, No.8, pp.137-148.
  7. Robertson, P. K., Woeller, D. J. and Finn, W. D. L. (1992). "Seismic Cone Penetration Test for Evaluating Liquefaction Potential Under Cyclic Loading", Canadian Geotechnical Journal, Ottawa, Canada, Vol.29, pp.686-695. https://doi.org/10.1139/t92-075
  8. Seed, H. B. and Idriss, I. M. (1971). "Simplified Procedure for Evaluating Soil Liquefaction Potential", Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.97, No. SM9, pp.1249-1273.
  9. Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. (1985). "Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations", Journal of Geotechnical Engineering, ASCE, Vol.111, No.12, pp.1016-1032.
  10. The ministry of construction and transportation (1999), A Study on Seismic Design Criteria.
  11. Yoon Yong-Jun (2002), A Comparative Study on the Evaluation Methodologies of Liquefaction Potential, Master's Thesis, Pukyong National University.
  12. Youd, T. L. and Seed, I. M. (2001), "Liquefaction Resistance of Soil: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical Engineering, ASCE, Vol.127, No.4, pp.297-313. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297)

Cited by

  1. Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On vol.30, pp.6, 2018, https://doi.org/10.9765/KSCOE.2018.30.6.306