JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 27, No. 1, 2014 http://dx.doi.org/10.14403/jcms.2014.27.1.47

WEAK C_k^f -SPACES FOR MAPS AND THEIR DUALS

YEON SOO YOON*

ABSTRACT. In this paper, we introduce and study the concepts of weak C_k^f -spaces for maps which are generalized concepts of C_k^f -spaces for maps, and introduce the dual concepts of weak C_k^f -spaces for maps and obtain some dual results.

1. Introduction

Throughout this paper, a space means a space of the homotopy type of a locally finite connected CW complex. All maps shall mean continuous functions. It is known that any space X is filtered by the projective spaces of ΩX by a result of Milnor [9] and Stasheff [11];

$$\Sigma \Omega X = P^1(\Omega X) \hookrightarrow P^2(\Omega X) \hookrightarrow \cdots \hookrightarrow P^\infty(\Omega X) \simeq X.$$

For each $1 \leq m \leq n$, let $j_{m,n}^X : P^m(\Omega X) \to P^n(\Omega X)$ and $e_n^X : P^n(\Omega X) \to P^\infty(\Omega X) \simeq X$ be the natural inclusions. Let $f : A \to X$ be a map. A space X is called [6] a C_k^f -space if the inclusion $e_k^X : P^k(\Omega X) \to X$ is f-cyclic. It is known [6] that a space X is a C_k^f -space for a map $f : A \to X$ if and only if $G^f(Z, X) = [Z, X]$ for any space Z with $cat \ Z \leq k$.

In this paper, we introduce the concepts of weak C_k^f -spaces for maps which are generalizations of C_k^f -spaces for maps [6] and study some properties of weak C_k^f -spaces for maps. We show that a space X is a weak C_k^f -space for a map $f: A \to X$ if and only if $WG^f(Z, X) = [Z, X]$ for any space Z with $cat Z \leq k$. Let $f: A \to X$ and $g: B \to Y$ be any maps. Then we show that the product space $X \times Y$ is a weak $C_k^{(f \times g)}$ -space for a map $(f \times g): A \times B \to X \times Y$ if and only if X is a weak C_k^f -space for a map $f: A \to X$ and Y is a weak C_k^g -space for a

Received October 18, 2013; Accepted January 16, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 55P45, 55P35.

Key words and phrases: f-cyclic maps, weakly f-cyclic maps, p-cocyclic maps, weakly p-cocyclic maps.

The author was supported by Hannam University Research Fund, 2013.

map $g: B \to Y$. We also introduce the dual concepts of weak C_k^f -spaces for maps and obtain some dual results.

2. Weak C_k^f -spaces for maps

Let $f : A \to X$ be a map. A based map $g : B \to X$ is called *f-cyclic* [10] if there is a map $\phi : B \times A \to X$ such that the diagram

$$\begin{array}{ccc} A \times B & \stackrel{\phi}{\longrightarrow} & X \\ i \uparrow & & \nabla \uparrow \\ A \lor B & \stackrel{(f \lor g)}{\longrightarrow} & X \lor X \end{array}$$

is homotopy commute, where $j: A \vee B \to A \times B$ is the inclusion and $\nabla: X \vee X \to X$ is the folding map. We call such a map ϕ an associated map of a f-cyclic map g. Clearly, g is f-cyclic iff f is g-cyclic. In the case $f = 1_X : X \to X$, a map $g: B \to X$ is called cyclic [12]. We denote the set of all homotopy classes of f-cyclic maps from B to X by $G^f(B, X)$ which is called the Gottlieb set for a map $f: A \to X$. In the case $f = 1_X : X \to X$, we called such a set $G^1(B, X)$ as the Gottlieb set, denoted by G(B, X). In particular, $G^f(S^n, X)$ will be denoted by $G_n^f(X)$ which is called the evaluation subgroups $G_n(X) = G_n^1(X)$ of $\pi_n(X)$. In general, $G(B, X) \subset G^f(B, X) \subset [B, X]$ for any spaces A, B, X and any map $f: A \to X$.

It is shown [15] that $G_5(S^5 \times S^5) \cong 2\mathbb{Z} \oplus 2\mathbb{Z} \neq G_5^{i_1}(S^5 \times S^5) \cong 2\mathbb{Z} \oplus \mathbb{Z} \neq \pi_5(S^5 \times S^5) \cong \mathbb{Z} \oplus \mathbb{Z}.$

Let $f : A \to X$ be a based map. A based map $g : B \to X$ is called a weakly f-cyclic [17] if $g_{\#}(\pi_n(B)) \subset G_n^f(X)$ for all n. In the case $f = 1_X : X \to X$, a map $g : B \to X$ is called weakly cyclic [13]. The set of all homotopy classes of weakly f-cyclic maps from B to Xis denoted by $WG^f(B, X)$. In the case $f = 1_X : X \to X$, we called such a set $WG^1(B, X)$ as the weak Gottlieb set, denoted by WG(B, X). In particular, $WG^f(S^n, X)$ will be denoted by $WG_n^f(X)$ which is called the weak Gottlieb group for a map $f : A \to X$. It is known [13] that any cyclic map is a weakly cyclic map, but the converse does not hold. That means, in general, $G(B, X) \subsetneq WG(B, X)$ and $G^f(B, X) \subset WG^f(B, X)$. A space X is called a G-space [3] if $G_n(X) = \pi_n(X)$ for all n. A space X is called a G^f -space for a map $f : A \to X$ [17] if $G_n^f(X) = \pi_n(X)$ for all n. LEMMA 2.1. Let $f : A \to X$, $g : B \to Y$ be maps. If $\alpha : Z \to X$ is a weakly f-cyclic map and $\theta : C \to Z$ is an arbitrary map, then $\alpha \circ \theta : C \to X$ is a weakly f-cyclic map.

Proof. Since $\alpha: Z \to X$ is a weakly f-cyclic map, $(\alpha \circ \theta)_{\#}(\pi_n(C)) = \alpha_{\#} \circ \theta_{\#}(\pi_n(C)) \subset \alpha_{\#}(\pi_n(Z)) \subset G_n^f(X)$ for all n. Thus we know $\alpha \circ \theta: C \to X$ is a weakly f-cyclic map. \Box

We can obtain, from the above definition, the following proposition.

PROPOSITION 2.2. The followings are equivalent;

(1) X is a G^f -space for a map $f: A \to X$

(2) $1_X: X \to X$ is weakly f-cyclic

(3) $WG^{f}(Z, X) = [Z, X]$ for any space Z.

Proof. (1) \Leftrightarrow (2). It follows from the definition of G^f -space. (2) implies (3). For any space Z, let $g : Z \to X$ be any map. Then we know, from Lemma 2.1, that $g = 1_X \circ g : Z \to X$ is a weakly f-cyclic. (3) implies (2). Taking Z = X, then $1_X : X \to X$ is a weakly f-cyclic map.

It is known that any space X is filtered by the projective spaces of ΩX by a result of Milnor [9] and Stasheff [11];

$$\Sigma \Omega X = P^1(\Omega X) \hookrightarrow P^2(\Omega X) \hookrightarrow \cdots \hookrightarrow P^\infty(\Omega X) \simeq X.$$

For each $1 \leq m \leq n$, let $j_{m,n}^X : P^m(\Omega X) \to P^n(\Omega X)$ and $e_k^X : P^k(\Omega X) \to P^\infty(\Omega X) \simeq X$ be the natural inclusions.

Let $f: A \to X$ be a map. A space X is called [6] a C_k^f -space for a map $f: A \to X$ if the inclusion $e_k^X: P^k(\Omega X) \to X$ is f-cyclic.

THEOREM 2.3. ([1],[2]) The category cat $X \leq k$ if and only if $e_k^X : P^k(\Omega X) \to X$ has a right homotopy inverse.

It is known [6] that a space X is a C_k^f -space for a map $f: A \to X$ if and only if $G^f(Z, X) = [Z, X]$ for any space Z with cat $Z \leq k$.

DEFINITION 2.4. Let $f : A \to X$ be a map. A space X is called a weak C_k^f -space for a map $f : A \to X$ if $e_k^X : P^k(\Omega X) \to X$ is a weakly f-cyclic map.

 ΣX denote the reduced suspension of X and ΩX denote the based loop space of X. The adjoint functor from the group $[\Sigma X, Y]$ to the group $[X, \Omega Y]$ will be denoted by τ . The symbols *e* and *e'* denote $\tau^{-1}(1_{\Omega X})$ and $\tau(1_{\Sigma X})$ respectively.

PROPOSITION 2.5.

- (1) Any weak C_n^f -space for a map $f : A \to X$ is a weak C_m^f -space for a map $f : A \to X$ for $1 \le m \le n$.
- (2) X is a weak C_1^f -space for a map $f : A \to X$ if and only if $WG^f(\Sigma B, X) = [\Sigma B, X]$ for any space B.

Proof. (1) Since $e_m^X \sim e_n^X \circ j_{m,n}^X : P^m(\Omega X) \to X$ and $e_n^X : P^n(\Omega X) \to X$ is a weakly *f*-cyclic map, we know, from Lemma 2.1, that any weak C_n^f -space for a map $f : A \to X$ is a weak C_n^f -space for a map $f : A \to X$ for $1 \leq m \leq n$. (2) Suppose X is a weak C_1^f -space for a map $f : A \to X$. Thus $e : \Sigma \Omega X = P^1(\Omega X) \to X$ is a weakly *f*-cyclic map. Let B be any space and $g : \Sigma B \to X$ a map. Then we know, from Lemma 2.1, that $g = e \circ \Sigma \tau(g) : \Sigma B \to X$ is a weakly *f*-cyclic. On the other hand, taking $B = \Omega X, e : \Sigma \Omega X \to X$ is a weakly *f*-cyclic map. Thus X is a weak C_1^f -space for a map $f : A \to X$. \Box

THEOREM 2.6. Let $f : A \to X$ be a map. Then X is a weak C_k^f -space for a map $f : A \to X$ if and only if $WG^f(Z, X) = [Z, X]$ for any space Z with cat $Z \leq k$.

Proof. Suppose that X is a weak C_k^f -space. Then $e_k^X : P^k(\Omega X) \to X$ is weakly f-cyclic. Let Z be a space with $cat Z \leq k$ and $g : Z \to X$ any map. Since $cat Z \leq k$, there exists a map $s_k^Z : Z \to P^k(\Omega Z)$ such that $e_k^Z \circ s_k^Z \sim 1_Z$. We see $g \circ e_k^Z \sim e_k^X \circ P^k(\Omega g)$ by the naturality of the construction of $P^k(\Omega Z)$. Thus we know, from Lemma 2.1, that $g \sim$ $g \circ e_k^Z \circ s_k^Z \sim e_k^X \circ (P^k(\Omega g) \circ s_k^Z) : Z \to X$ is weakly f-cyclic. It follows that $WG^f(Z, X) = [Z, X]$. Conversely, assume that $WG^f(Z, X) = [Z, X]$ for any space Z with $cat Z \leq k$. It is known that $cat C_\theta \leq cat Y + 1$ for any map $\theta : X \to Y$. Thus $cat P^k(\Omega X) = cat C_\theta \leq cat P^{k-1}(\Omega X) + 1$, where $\theta : (\Omega X) * \cdots * (\Omega X) \to P^{k-1}(\Omega X)$ is the map. By induction, we have $cat P^k(\Omega X) \leq k$. Thus we know that $e_k : P^k(\Omega X) \to X$ is weakly f-cyclic by our assumption, and hence X is a weak C_k^f -space for a map $f : A \to X$.

We have the following corollary from Theorem 2.6, Proposition 2.2 and Proposition 2.5.

COROLLARY 2.7. Any G^f -space is a weak C_k^f -space and any weak C_k^f -space is a weak C_1^f -space.

We can easily obtain the following proposition.

Proposition 2.8.

- (1) For any map $f: A \to X$, $i: C \to A$ and any space $Z, G^f(Z, X) \subset G^{f \circ i}(Z, X)$.
- (2) If $r: X \to Y$ is a map, then $r_{\#}: G^{f}(Z, X) \to G^{r \circ f}(Z, Y)$ for any space Z.

PROPOSITION 2.9. [6] Let $f : A \to X$ and $g : B \to Y$ be any maps. The relation

$$G^{(f \times g)}(Z, X \times Y) \cong G^f(Z, X) \times G^g(Z, Y)$$

holds for any space Z (under the identification $[Z, X \times Y] \cong [Z, X] \times [Z, Y]$).

LEMMA 2.10. Let $f : A \to X$, $g : B \to Y$ be maps.

- (1) If $\alpha : Z \to X$ is weakly *f*-cyclic and $\beta : Z \to Y$ is weakly *g*-cyclic, then $(\alpha \times \beta)\Delta : Z \to X \times Y$ is weakly $(f \times g)$ -cyclic.
- (2) If $r: X \to Y$ is a map, then $r_{\#}: WG^{f}(Z, X) \to WG^{r \circ f}(Z, Y)$ for any space Z.

Proof. (1) Since $\alpha : Z \to X$ is weakly f-cyclic and $\beta : Z \to Y$ is weakly g-cyclic, we have, from Proposition 2.9, that $((\alpha \times \beta)\Delta)_{\#}(\pi_n(Z)) \cong \alpha_{\#}(\pi_n(Z)) \times \beta_{\#}(\pi_n(Z)) \subset G_n^f(X) \times G_n^g(X) \cong G_n^{f \times g}(X \times X)$. Thus $(\alpha \times \beta)\Delta : Z \to X \times Y$ is weakly $(f \times g)$ -cyclic. (2) Let $g : Z \to X$ be a weakly f-cyclic map. Then $g_{\#}(\pi_n(Z)) \subset G_n^f(X)$ for all n. Thus we know, from Proposition 2.8(2), that $(r \circ g)_{\#}(\pi_n(Z)) = r_{\#} \circ g_{\#}(\pi_n(Z)) \subset$ $r_{\#}(G_n^f(X)) \subset G_n^{r \circ f}(Y)$. Thus we have $r_{\#} : WG^f(Z, X) \to WG^{r \circ f}(Z, Y)$ for any space Z.

PROPOSITION 2.11. Let $f : A \to X$, $g : B \to Y$ be maps. Then $WG^{(f \times g)}(Z, X \times Y) \cong WG^{f}(Z, X) \times WG^{g}(Z, Y)$ for any space Z.

Proof. Let $\alpha : Z \to X$ and $\beta : Z \to Y$ be maps. Suppose that $(\alpha, \beta) \in WG^f(Z, X) \times WG^g(Z, Y)$. We know, from Lemma 2.10(1), that $(\alpha \times \beta) \circ \Delta_Z$ is weakly $f \times g$ -cyclic and $(\alpha \times \beta) \circ \Delta_Z \in WG^{f \times g}(Z, X \times Y)$, where $\Delta_Z : Z \to Z \times Z$ is the diagonal map. Conversely, suppose that $(\alpha \times \beta)\Delta \in WG^{f \times g}(Z, X \times Y)$. Let $p_1 : X \times Y \to X$ and $p_2 : X \times Y \to Y$ be the projections and $i_1 : X \to X \times Y$ and $i_2 : Y \to X \times Y$ be the inclusions defined by $i_1(x) = (x, y_0)$ and $i_2(y) = (x_0, y)$ for any $x \in X$ and $y \in Y$, where $x_0 \in X$ and $y_0 \in Y$ are base points. Then we have, from Lemma 2.10(2), that $\alpha \sim p_1 \circ (\alpha \times \beta)\Delta$ is weakly $p_1 \circ (f \times g)$ -cyclic and α is weakly $f \sim p_1 \circ (f \times g) \circ i_1$ -cyclic. Similarly $\beta \sim p_2 \circ (\alpha \times \beta)\Delta$ is weakly $g \sim p_2 \circ (f \times g) \circ i_2$ -cyclic. It follows that $\alpha \in WG^f(Z, X)$ and $\beta \in WG^g(Z, Y)$. Thus $(\alpha, \beta) \in WG^f(Z, X) \times WG^g(Z, Y)$.

THEOREM 2.12. Let $f : A \to X$, $g : B \to Y$ be maps. Then $X \times Y$ is a weak $C_k^{(f \times g)}$ -space for a map $(f \times g) : A \times B \to X \times Y$ if and only if X is a weak C_k^f -space for a map $f : A \to X$ and Y is a weak C_k^g -space for a map $g : B \to Y$.

Proof. If $X \times Y$ is a weak $C_k^{(f \times g)}$ -space for a map $(f \times g) : A \times B \to X \times Y$, then for any space Z with $cat Z \leq k$ we see, from Theorem 2.6 and Proposition 2.11, that $WG^f(Z, X) \times WG^g(Z, Y) \cong WG^{(f \times g)}(Z, X \times Y) = [Z, X \times Y] \cong [Z, X] \times [Z, Y]$, and hence $WG^f(Z, X) = [Z, X]$ and $WG^g(Z, Y) = [Z, Y]$. Thus X is a weak C_k^f -space for a map $f : A \to X$ and Y is a weak C_k^g -space for a map $g : B \to Y$.

Conversely, suppose that X is a weak C_k^f -space for a map $f: A \to X$ and Y is a weak C_k^g -space for a map $g: B \to Y$. Then $WG^f(Z, X) = [Z, X]$ and $WG^g(Z, Y) = [Z, Y]$ for any space Z with cat $Z \leq k$. It follows that $WG^{(f \times g)}(Z, X \times Y) \cong WG^f(Z, X) \times WG^g(Z, Y) = [Z, X] \times [Z, Y] \cong [Z, X \times Y]$ for any space Z with cat $Z \leq k$. Thus $X \times Y$ is a weak $C_k^{(f \times g)}$ -space for a map $(f \times g): A \times B \to X \times Y$.

3. Weak DC_k^p -spaces for maps

In [2], Ganea introduced the concept of cocategory of a space as follows; Let X be any space. Define a sequence of cofibrations

$$\mathcal{C}_k : X \xrightarrow{e'_k} F_k \xrightarrow{s'_k} B_k \ (k \ge 0)$$

as follows, let $C_0: X \xrightarrow{e'_0} cX \xrightarrow{s'_0} \Sigma X$ be the standard cofibration. Assuming C_k to be defined, let F'_{k+1} be the fibre of s'_k and $e''_{k+1}: X \to F'_{k+1}$ lift e'_k . Define F_{k+1} as the reduced mapping cylinder of e''_{k+1} , let $e'_{k+1}: X \to F_{k+1}$ be the obvious inclusion map, and let $B_{k+1} = F_{k+1}/e'_{k+1}(X)$ and $s'_{k+1}: F_{k+1} \to F_{k+1}/e_{k+1}(X)$ the quotient map.

DEFINITION 3.1. [2] The cocategory of X, cocat X, is the least integer $k \ge 0$ for which there is a map $r: F_k \to X$ such that $r \circ e'_k \sim 1$. If there is no such integer, cocat $X = \infty$.

The following remark can easily obtained from the above definition.

REMARK 3.2. cocat $X \leq k$ if and only if $e'_k : X \to F_k$ has a left homotopy inverse.

For a map $p: X \to A$, a based map $g: X \to B$ is p-cocyclic [10] if there is a map $\theta: X \to A \lor B$ such that $j\theta \sim (p \times g)\Delta$, where $j: A \lor B \to A \times B$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. The dual Gottlieb set for a map $p: X \to A$, $DG^p(X, B)$, is the set of all homotopy classes of p-cocyclic maps from X to B. In the case $p = 1_X: X \to X$, we call a 1-cocyclic map is just a cocyclic map, and denoted by, DG(X, B), which is the set of all homotopy classes of cocyclic maps from X to B. We can identify $H^n(X; \pi)$ with $[X, K(\pi, n)]$, and defined the coevaluation subgroup $G^n(X; \pi)$ of $H^n(X; \pi)$ to be the set of all homotopy classes of cocyclic maps from X to $K(\pi, n)$. The group $G^n(X) = G^n(X; \mathbb{Z})$ is the dual of Gottlieb group $G_n(X)$ of $\pi_n(X)$ for all n. A space X is called a G'-space [4] if $G^n(X) = H^n(X)$ for all n. In particular, $DG^p(X, K(\mathbb{Z}, n))$ will be denoted by $G_p^n(X)$ which is called the dual Gottlieb group for a map $p: X \to A$.

In general, $DG(X, B) \subset DG^p(X, B) \subset [X, B]$ for any map $p: X \to A$ and any space B. However, there is an example in [14] such that $DG(X, B) \neq DG^p(X, B) \neq [X, B]$.

It is introduced [19] that a space X is called DC_k^p -space for a map $p: X \to A$ if $e'_k X : X \to F_k^X$ is p-cocyclic. It is known [18] that for a map $p: X \to A, g: X \to B$ is p-cocyclic if and only if $g^*([B, Z]) \subset DG^p(X, Z)$ for any space Z.

DEFINITION 3.3. Let $p: X \to A$ be a map, a map $g: X \to B$ is called a weakly p-cocyclic map if $g^*(H^n(B)) \subset G_p^n(X)$ for all n. The set of all homotopy classes of weakly p-cocyclic maps from X to B is denoted by $WDG^p(X, B)$. In particular, $WDG^p(X, K(\mathbb{Z}, n))$ will be denoted by $WG_p^n(X)$ which is called the weak Gottlieb group for a map $p: X \to A$.

Clearly any *p*-cocyclic $g: X \to B$ is a weakly *p*-cocyclic, but the converse does not hold. It is well known [4] that $\mathbb{R}P^2$ is a G'-space, but not co-*H*-space. Thus we easily know that $1: \mathbb{R}P^2 \to \mathbb{R}P^2$ is weakly cocyclic, but not cocyclic.

We showed [19] that a space X is a DC_k^p -space for a map $p: X \to A$ if and only if $DG^p(X, Z) = [X, Z]$ for any space Z with cocat $Z \leq k$.

DEFINITION 3.4. Let $p: X \to A$ be a map. A space X is called a weak DC_k^p -space for a map $p: X \to A$ if $e_k^{'X}: X \to F_k^X$ is a weakly p-cocyclic, that is, $(e_k^{'X})^*(H^n(F_k^X)) \subset G_p^n(X)$ for all n.

THEOREM 3.5. Let $p: X \to A$ be a map. Then a space X is a weak DC_k^p -space for a map $p: X \to A$ if and only if $WDG^p(X, Z) = [X, Z]$ for any space Z with cocat $Z \leq k$.

Proof. Suppose X is a weak DC_k^p -space for a map $p: X \to A$. Let Z be a space with $cocat Z \leq k$ and $g: X \to Z$ any map. For any n, let $\alpha: Z \to K(\mathbb{Z}, n)$ be any map. Since $cocat Z \leq k$, there is a map $s: F_k \to Z$ such that $s \circ e'_k \sim 1_Z$. Since $e'_k: X \to F_k$ is weakly p-cocyclic, $\alpha \circ s \circ F_k(g) \circ e'_k: X \to K(\mathbb{Z}, n)$ is p-cocyclic. Thus we have a map $\theta: X \to A \lor K(\mathbb{Z}, n)$ such that $j\theta \sim (p \times (\alpha \circ s \circ F_k(g) \circ e'_k))\Delta$, where $j: A \lor K(\mathbb{Z}, n) \to A \times K(\mathbb{Z}, n)$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. Interpreting F_k as a functor, we have the following homotopy commutative diagram;

Thus we have that $\alpha \circ s \circ F_k(g) \circ e'_k \sim \alpha \circ g : X \to K(\mathbb{Z}, n)$ and $\alpha \circ g : X \to K(\mathbb{Z}, n)$ is *p*-cocyclic. Thus we know that *g* is a weakly *p*-cocyclic map and $WDG^p(X, Z) = [X, Z]$ for any space *Z* with cocat $Z \leq k$. On the other hand, we assume that for any space *Z* with cocat $Z \leq k$, $WDG^p(X, Z) = [X, Z]$. It is well known [1] that if $F \xrightarrow{i} E \xrightarrow{p} B$ is a fibration, then cocat $F \leq cocat E + 1$. From the fact that $F_k \simeq F'_k \to F_{k-1} \xrightarrow{s'_{k-1}} B_{k-1}$ is a fibration, we know that cocat $F_k \leq cocat F_{k-1} + 1$. Then we have, by induction, cocat $F_k \leq k$. Thus we know, by our assumption, that $e'_k : X \to F_k$ is weakly *p*-cocyclic and *X* is a weak DC_k^p -space for a map $p: X \to A$.

PROPOSITION 3.6. Let $p: X \to A$ and $q: Y \to A$ be any maps. Then the relation

$$WDG^{\nabla(p\vee q)}(X\vee Y,B) \equiv WDG^p(X,B) \times WDG^q(Y,B)$$

holds for any space B.

Proof. Let $g: X \vee Y \to B$ be a weakly $\nabla(p \vee q)$ -cocyclic map. For any n, let $\alpha: B \to K(\mathbb{Z}, n)$ be any map. Since $\alpha \circ g: X \vee Y \to K(\mathbb{Z}, n)$ is $\nabla(p \vee q)$ -cocyclic, there is a map $G: X \vee Y \to A \vee K(\mathbb{Z}, n)$ such that $jG \sim ((\nabla(p \vee q)) \times (\alpha \circ g))\Delta$, where $j: A \vee K(\mathbb{Z}, n) \to A \times K(\mathbb{Z}, n)$ is the inclusion and $\Delta: X \vee Y \to (X \vee Y) \times (X \vee Y)$ is the diagonal. Consider the maps $G_1 = G \circ i_1 : X \to A \vee K(\mathbb{Z}, n)$ and $G_2 = G \circ i_2 : Y \to A \vee K(\mathbb{Z}, n)$, where $i_1: X \to X \vee Y$, $i_2: Y \to X \vee Y$ are natural inclusions. Then $j \circ G_1 \sim (p \times (\alpha \circ g \circ i_1))\Delta$, $j \circ G_2 \sim (q \times (\alpha \circ g \circ i_2))\Delta$, where $i_1: X \to X \vee Y$, $i_2: Y \to X \vee Y$ are natural inclusions. Thus we know

 $\begin{array}{ll} (g \circ i_1, g \circ i_2) \in WDG^p(X, B) \times WDG^q(Y, B). \text{ On the other hand, let} \\ (g_1, g_2) \in WDG^p(X, B) \times WDG^q(Y, B). \text{ For any } n, \text{ let } \alpha : B \to K(\mathbb{Z}, n) \\ \text{be any map. Since } g_1 : X \to B \text{ is weakly } p\text{-cocyclic and } g_2 : Y \to B \text{ is} \\ \text{weakly } q\text{-cocyclic, there are maps } G_1 : X \to A \vee K(\mathbb{Z}, n) \text{ and } G_2 : Y \to A \vee K(\mathbb{Z}, n) \text{ such that } j \circ G_1 \sim (p \times (\alpha \circ g_1))\Delta, \ j \circ G_2 \sim (q \times (\alpha \circ g_2))\Delta \\ \text{respectively. Let } T : A \vee K(\mathbb{Z}, n) \vee A \vee K(\mathbb{Z}, n) \to A \vee A \vee K(\mathbb{Z}, n) \vee K(\mathbb{Z}, n) \\ \text{be the switching map. Then consider the map } G = (\nabla \vee \nabla) \circ T \circ (G_1 \vee G_2) : \\ X \vee Y \to A \vee K(\mathbb{Z}, n). \text{ Then } j \circ G \sim ((\nabla (p \vee q) \times \alpha \circ \nabla (g_1 \vee g_2))\Delta, \\ \text{where } \Delta : X \vee Y \to (X \vee Y) \times (X \vee Y) \text{ is the diagonal map. Thus we} \\ \text{know } \nabla (g_1 \vee g_2) \in WDG^{\nabla (p \vee q)}(X \vee Y, B). \end{array}$

THEOREM 3.7. Let $p: X \to A$ and $q: Y \to A$ be any maps. Then the wedge space $X \lor Y$ is a weak $DC_k^{\nabla(p\lor q)}$ -space for a map $\nabla(p\lor q):$ $X \lor Y \to A$ if and only if X is a weak DC_k^p -space for a map $p: X \to A$ and Y is a weak DC_k^q -space for a map $q: Y \to A$.

Proof. If $X \vee Y$ is a weak $DC_k^{\nabla(p\vee q)}$ -space for a map $\nabla(p\vee q): X \vee Y \to A$, then we know, from Theorem 3.5 and Proposition 3.6, that $WDG^p(X,Z) \times WDG^q(Y,Z) \equiv WDG^{\nabla(p\vee q)}(X \vee Y,Z) = [X \vee Y,Z] \equiv [X,Z] \times [Y,Z]$ for any space Z with $cocat Z \leq k$. Thus $WDG^p(X,Z) = [X,Z]$, $WDG^q(Y,Z) = [Y,Z]$ and X is a weak DC_k^p -space for a map $p: X \to A$ and Y is a weak DC_k^q -space for a map $q: Y \to A$. On the other hand, suppose that X is a weak DC_k^p -space for a map $p: X \to A$ and Y is a weak DC_k^q -space for a map $p: X \to A$ and Y is a weak DC_k^q -space for a map $p: X \to A$ and Y is a weak DC_k^q -space for a map $p: X \to A$ and Y is a weak DC_k^q -space for a map $p: X \to A$ and Y is a weak DC_k^q -space for a map $p: X \to A$ and Y is a weak DC_k^q -space for a map $p: X \to A$ and Y is a weak DC_k^q -space for a map $p: X \to A$ and Y is a weak DC_k^q -space for a map $p: X \to A$ and Y is a weak DC_k^q -space for a map $p: X \to A$. Then we know that $WDG^p(X,Z) = [X,Z], WDG^q(Y,Z) = [Y,Z]$ for any space Z with $cocat Z \leq k$. Thus we have, from Proposition 3.6, that $WDG^{\nabla(p\vee q)}(X \vee Y,Z) \equiv WDG^p(X,Z) \times WDG^q(Y,Z) = [X,Z] \times [Y,Z] \equiv [X \vee Y,Z]$ for any space Z with $cocat Z \leq k$. Thus we know, from Theorem 3.5, that $X \vee Y$ is a weak $DC_k^{\nabla(p\vee q)}$ -space for a map $\nabla(p \vee q): X \vee Y \to A$.

References

- T. Ganea, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc. 10 (1960), no. 3, 623-639.
- T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965), 295-322.
- [3] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.
- [4] H. B. Haslam, G-spaces and H-spaces, (Ph. D. Thesis, University of California, Irvine, 1969).

- [5] N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. Lon. Math. Soc. 30 (1998), 623-634.
- [6] N. Iwase, M. Mimura, N. Oda, and Y. S. Yoon, *The Milnor-Stasheff filtration on spaces and generalized cyclic maps*, Canad. Math. Bull. 55 (2012), no. 3, 523-536.
- [7] I. M. James, On category in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348.
- [8] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71.
- [9] J. Milnor, Construction of universal bundles, I, II, Ann. Math. 63 (1956), 272-284, 430-436.
- [10] N. Oda, The homotopy of the axes of pairings, Canad. J. Math. 17 (1990), 856-868.
- [11] J. D. Stasheff, *Homotopy associativity of H-spaces I, II*, Trans. Amer. Math. Soc. **108** (1963), 275-292, 293-312.
- [12] K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.
- [13] M. H. Woo and Y. S. Yoon, On some properties of G-spaces, Comm. Kor. Math. Soc. 2 (1987), no. 1, 117-122.
- [14] Y. S. Yoon, The generalized dual Gottlieb sets, Top. Appl. 109 (2001), 173-181.
- [15] Y. S. Yoon, Generalized Gottlieb groups and generalized Wang homomorphisms, Sci. Math. Japon. 55 (2002), no. 1, 139-148.
- [16] Y. S. Yoon, H^f-spaces for maps and their duals, J. Korea Soc. Math. Educ. Ser. B 14 (2007), no. 4, 289-306.
- [17] Y. S. Yoon, G^f-spaces for maps and Postnikov systems, J. Chungcheong Math. Soc. 22 (2009), no. 4, 831-841.
- [18] Y. S. Yoon, On cocyclic maps and cocategory, J. Chungcheong Math. Soc. 24 (2011), no. 1, 137-140.
- [19] Y. S. Yoon and H. D. Kim, Generalized dual Gottlieb sets and cocategories, J. Chungcheong Math. Soc. 25 (2012), no. 1, 135-140.

*

Department of Mathematics Education Hannam University Daejeon 306-791, Korea *E-mail*: yoon@hannam.ac.kr