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SECANT VARIETIES TO THE VARIETY OF
REDUCIBLE FORMS

Yong-Su Shin*

Abstract. We completely classify the dimension of secant vari-
eties Sec1(Xλ,2) to the variety of reducible forms in k[x0, x1, x2]
when λ = (1, . . . , 1, 3, . . . , 3), and also show that they are all non-
defective.

1. Introduction

Let R = k[x0, x1, . . . , xn] be an (n+1)-variable polynomial ring over a
field k and let I be a homogeneous ideal of R (or the ideal of a subscheme
in Pn). Then the numerical function

H(R/I, t) := dimkRt − dimk It

is called a Hilbert function of the ring R/I. If I := IX is the ideal of a
subscheme X in Pn, then we denote the Hilbert function of X by

HX(t) := H(R/IX, t).

To introduce a star-configuration, we start with varieties of some
specific ideals of R. In [2], the authors proved that if F1, . . . , Fs are
general forms in R = k[x0, x1, . . . , xn] and

F̃j =
∏s

i=1 Fi

Fj
for j = 1, . . . , s,

then
(F̃1, . . . , F̃s) =

⋂
1≤i<j≤s(Fi, Fj).

The variety X in Pn of the ideal

(F̃1, . . . , F̃s) =
⋂

1≤i<j≤s(Fi, Fj)
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is called a star-configuration in Pn of type s defined by general forms
F1 . . . , Fs. Furthermore, if F1, . . . , Fs are all general linear forms, then
X is called a linear star-configuration of type s (see also [1, 2, 6, 7]).

In this paper, we discuss some applications of star-configurations in
Pn. In other words, we study some examples of secant varieties to the
variety of reducible forms in P2, which is not defective, using the sum of
ideals of two star-configurations in P2.

In Section 2, we discuss the Hilbert function of the ideal of the union
of two star-configurations X and Y in P2 when λ = (1, . . . , 1, 3, . . . , 3),
which we will use to find the dimension of secant varieties to the variety
of reducible forms in Section 3 (see also [3, 4, 5]).

In Section 3, we prove that if λ = (1, . . . , 1, 3, . . . , 3), then the secant
variety Sec1(Xλ,2) to the variety Xλ,2 is not defective for 3 < d (see
Theorem 3.5). Finally, we give a question on secant varieties for the
further study.

2. The union of two star-configurations in P2 defined by
linear forms and cubic forms

In this section, we study the Hilbert function and the minimal gen-
erators of the ideal the union of two star-configurations in P2, and we
use these in the next section. Throughout this paper,

a solid line Li is a line defined by a linear form Li,
a dashed line Mi is a line defined by a linear form Mi,
a thick line Li is a line defined by a cubic form L3

i ,

for 1 ≤ i ≤ s with s ≥ 2. Moreover, we define that

Pi,j is a point defined by linear forms Li, Lj ,
Pi,j is a double point defined by a linear form and a quadratic form

Li, L
2
j ,

Pi,j is a triple point defined by a linear form and a cubic form Li, L
3
j ,

Qi,j is a point defined by linear forms Mi,Mj , and
Qi,j is a double point defined by a linear form and a quadratic form

Mi,M
2
j ,

where Li, Lj and Mi, Mj are linear forms in R with i < j.
Let λ = (d1, . . . , ds), where 1 ≤ d1 ≤ · · · ≤ ds and d :=

∑s
i=1di. We

denote by X(λ) a star-configuration in P2 defined by forms F1, . . . , Fs in
R = k[x0, x1, x2] with deg(Fi) = di for every i.
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ible forms 41Lemma 2.1. Let � = (1; : : : ; 1; 3), and X1 := X(�)1 and X2 := X(�)2 bestar-
on�gurations in P2 with 5 � d � 7. Then X := X1[X2 has generi
Hilbert fun
tion. In parti
ular, dim|�IX1 + IX2�d = �d+22 �:Proof. First, we assume that X1 and X2 are de�ned by L1; L2; L33, andM1;M2;M3M4M5, respe
tively, where Li and Mi are linear forms in Rfor every i (see Figure 1). Furthermore, we assume that L1 vanishes onfour points in X1, and one more point in X2, de�ned by two linear formsM1 and M2, and L2 vanishes on three points in X1 and one more pointin X2 de�ned by linear forms M1 and M5 (see Figure 1 again).L1L2L3 M 1M 2M 3M 4M 5 Figure 1By Bez�out's Theorem, for N 2 (IX)4, N = �L1L2M2M1 for some� 2 |. Therefore, the Hilbert fun
tion of X is 1 3 6 10 14 !; aswe wished.Using the following exa
t sequen
e0 ! R=IX ! R=IX1 �R=IX2 ! R=(IX1 + IX2) ! 0;we have dim|(IX1 + IX2)5 = �5+22 �: By the same method as above, one
an show that X has generi
 Hilbert fun
tion when d = 6; 7, and sodim|(IX1 + IX2)d = �d+22 �;for 5 � d � 7, whi
h 
ompletes the proof.Theorem 2.2. Let � = (1; : : : ; 1; 3) and let X be the union of twostar-
on�gurations X1 := X(�)1 and X2 := X(�)2 in P2 with d � 8. Thendim|(IX1 + IX2)d = 4d+ 8:
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Proof. First, we assume that X1 and X2 are defined by L1, . . . , Ld−3, L
3
d−2

and M1, . . . , Md−3, Md−2M
2
d−1, respectively, where Li and Mj are linear

forms in R for every i and j. Without loss of generality, we assume

L1 vanishes on d + 1 points P1,2, . . . , P1,d−3,P1,d−2,Q1,d−1,
L2 vanishes on d points P2,3, . . . , P3,d−3,P2,d−2,Q2,d−1,

...
Ld−3 vanishes on 5 points Pd−3,d−2,Qd−3,d−1.

By Bezóut’s Theorem, for N ∈ (IX)d, N = L1 · · ·Ld−3N
′ for some

N ′ ∈ R3. Since a linear star-configurationY in P2 defined by M1, . . . ,Md−2

has no generators in degree 3 and N ′ has to vanishes on all points in Y,
we see that N ′ = 0, i.e., N = 0, and so dimk(IX)d = 0.

Using the following exact sequence

0 → R/IX → R/IX1 ⊕R/IX2 → R/(IX1 + IX2) → 0,

we have

dimk(IX1 + IX2)d = 2 · dimkRd − 2 · deg(X1) = 4d + 8,

which completes the proof of this theorem.

Lemma 2.3. Let λ = (1, 3, 3) or (1, 1, 3, 3), and X1 := X(λ)
1 and X2 :=

X(λ)
2 be star-configurations in P2. Then X := X1∪X2 has generic Hilbert

function. In particular, dimk
(
IX1 + IX2

)
d

=
(
d+2
2

)
.

Proof. We shall introduce only the proof for the case λ = (1, 3, 3),
and we omit the proof for the case λ = (1, 1, 3, 3) since it simply reiter-
ates the same arguments we will use. So we assume λ = (1, 3, 3). Let
λ′ = (3, 3), and Y1 := X(λ′)

1 and Y2 := X(λ′)
2 be star-configurations in P2.

Let Y1 and Y2 be defined by L2L3L4, L5L6L7 and M2M3M4,M5M6M7,
respectively, where Li and Mj are linear forms in R for every i, j. Then
it is not hard to see that the Hilbert function of Y := Y1 ∪ Y2 is
1 3 6 10 15 18 → .

Now assume that X1 := X(λ)
1 is defined by L1, L2L3L4, L5L6L7, where

L1 is a linear form in R, and Z := X1 ∪ Y2. Using the following exact
sequence

0 → R/IZ → R/IY ⊕R/(L1, G6) → R/(IY, L1, G6) → 0,

where G6 = L2 · · ·L7, we obtain the following Hilbert functions.
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H(R/IZ,−) : 1 3 6 10 15 − 24 →,
H(R/IY,−) : 1 3 6 10 15 18 18 →,

H(R/(L1, G6),−) : 1 2 3 4 5 6 6 →,
H(R/(IY, L1, G6),−) : 1 2 3 4 5 − 0 →,

H(R/(IY, L1),−) : 1 2 3 4 5 3 0 →.

By Bezóut’s Theorem, it is easily to show that (IZ)5 = {0}, and so the
Hilbert function of Z is H(R/IZ,−) : 1 3 6 10 15 21 24 →,
as we wished. Using the same idea as above and by Bezóut’s Theorem,
one can show that X has generic Hilbert function. Therefore, we get
that

dimk
(
IX1 + IX2

)
d

=
(
d+2
2

)
,

for d = 7, 8, as we wished.

By the same idea as in the proof of Theorem 2.2, the following theo-
rem can be easily obtained, and so we omit the proof.

Theorem 2.4. Let λ = ( 1, . . . , 1︸ ︷︷ ︸
(s−`)-times

, 3, . . . , 3︸ ︷︷ ︸
`-times

) and let X be the union

of two star-configurations X1 := X(λ)
1 and X2 := X(λ)

2 in P2 with either
` ≥ 3 or ` = 2 and d ≥ 9. Then dimk(IX1 + IX2)d = 4d + 6` + 2.

3. Varieties of reducible forms and their secants

We first recall the definition of the secant variety Secs−1(X) to the
variety X in Pn. Let λ ` d denote a partition of the integer d, i.e.

λ = (d1, . . . , ds) where 1 ≤ d1 ≤ · · · ≤ ds and
∑s

i=1di = d.

We associate a variety, denoted by Xλ,n, to R = k[x0, x1, . . . , xn] and λ,
which is defined by

Xλ,n := {[F ] ∈ P(Rd) | F = F1 · · ·Fs, deg Fi = di}.
Such varieties are called varieties of reducible forms. If λ is the d-tuple
(1, . . . , 1), then the variety is often referred to as the variety of completely
decomposable forms or split forms. In this case, Xλ,n is denoted by
Splitd(Pn).

Since the map below has only finite fibers,

P(Rd1)× · · · × P(Rds) −→ Xλ,n, where [F1]× · · · × [Fs] −→ [F1 · · ·Fs]
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the dimension of Xλ,n is

dimXλ,n =
((

d1+n
n

)− 1
)

+ · · ·+ ((
ds+n

n

)− 1
)

=
∑s

i=1

(
di+n

n

)− s.

Definition 3.1. Let X1, . . . ,Xs all be non-degenerate, reduced and
irreducible varieties in Pn with dimXi = di.

(a) Choose points Pi ∈ Xi such that {P1, . . . , Ps} are linearly indepen-
dent (and so s ≤ n). The join of {P1, . . . , Ps} is the linear space
spanned by the points, i.e.,

Λ(P1, . . . , Ps) := 〈P1, . . . , Ps〉 ' Ps−1.

(b) The join of X1, . . . ,Xs is Λ(X1, . . . ,Xs) :=⋃{Λ(P1, . . . , Ps) | for P1, . . . , Ps linearly independent, Pi ∈ Xi}.
(c) If X1 = · · · = Xs = X with dimX = d, then we write Λ(X1, . . . ,Xs)

= Secs−1(X) and call it the (s− 1)-st secant variety to X.

The number of parameters shows that the upper bound of the dimen-
sion of the join is

dim Λ(X1, . . . ,Xs) ≤ min
{
n,

∑s
i=1di + (s− 1)

}
,

and thus
dim Secs−1(X) ≤ min{n, ds + (s− 1)}.

Definition 3.2. Let X ⊂ Pn be a projective variety of dimension
d. Then the expected dimension of the secant variety Secs−1(X) to X is
defined by

expdim(Secs−1(X)) = min{n, ds + (s− 1)}.
However, the expected dimension of Secs−1(X) is not always the same

as dimSecs−1(X). If expdim(Secs−1(X)) − dim Secs−1(X) > 0, we say
that the secant variety Secs−1(X) to X is defective.

Since we are interested in the secants to the varieties of reducible
forms, we introduce another important result in [5] to find a description
of the tangent space at a generic point of those varieties.

Proposition 3.3 ([5]). Let λ ` d, λ = (d1, . . . , ds) and let Xλ,n ⊂
P(d+n

n )−1. Let P = [F1 · · ·Fs] be a generic point of Xλ,n where deg Fi =
di, i = 1, . . . , s. Then TP,Xλ,n

= P(VP ) where VP is the subspace of

Rd = k[x0, . . . , xn]d defined by VP := (F̃1, . . . , F̃s), where F̃i =
∏s

j=1 Fj

Fi

for every i = 1, . . . , s.

The following corollary is useful for finding whether or not the given
secant varieties are defective.
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Corollary 3.4 ([5]). Let λ ` d, λ = (d1, . . . , ds) and let Xλ,n ⊂
P(d+n

n )−1. Let P1, . . . , Ps be s generic points on Xλ,n. Then

dimSecs−1(Xλ,n) =
[(

d+n
n

)−H(A, d)
]− 1 = dimk Id − 1

where A = R/I and I = TP1 + · · ·+ TPs .

In this paper, we are interested in the secant variety Sec1(Xλ,2) to
the variety Xλ,n := {[F ] ∈ P(Rd) | F = F1 · · ·Fs, deg Fi = 1 or 2}.

In [3] and [6] the authors showed that the secant variety Sec1(Xλ,n) =
Sec1(Splitd(Pn)) is not defective for n ≥ 2. Moreover, since it is not hard
to show that the secant variety Sec1(Xλ,2) is not defective when di = 3 for
every i, we shall not introduce the proof in this paper. Thus we assume
that d1 = · · · = ds−` = 1 and ds−`+1 = · · · = ds = 3 with 1 ≤ ` < s
for the rest of this paper. We now introduce the main theorem in this
paper.

Theorem 3.5. Let λ 7→ d and λ = ( 1, . . . , 1︸ ︷︷ ︸
(s−`)-times

, 3, . . . , 3︸ ︷︷ ︸
`-times

). Then the

secant variety Sec1(Xλ,2) is not defective for s ≥ 3 and 1 ≤ ` < s.

Proof. If d = 5 and ` = 1, then by Lemma 2.1 and Corollary 3.4,

expdimSec1(Xλ,2)
= min

{
2 · dim((P(R1)× P(R1)× P(R1)× P(R3)) + 1,

(
5+2
2

)− 1
}

= 20 = dimk(IX1 + IX2)5 − 1 = dim Sec1(Xλ,2).

By the same method as above with Lemmas 2.1, 2.3, and Corollary 3.4,
one can see that expdimSec1(Xλ,2) = dim Sec1(Xλ,2) for either d = 6, 7
and ` = 1 or d = 7, 8 and ` = 2.

Now suppose either ` = 1 and d ≥ 8 or ` = 2 and d ≥ 9. Then, by
Theorems 2.2, 2.4 , and Corollary 3.4,

expdimSec1(Xλ,2)
= min

{
2 · dim((P(R1)× · · ×P(R1)︸ ︷︷ ︸

(s−1)-times

×P(R3)) + 1,
(
d+2
2

)− 1
}

= 4d + 7 (since d ≥ 8)
= dimk(IX1 + IX2)d − 1 = dimSec1(Xλ,2),

and
expdimSec1(Xλ,2)
= min

{
2 · dim((P(R1)× · · ×P(R1)︸ ︷︷ ︸

(s−2)-times

×P(R3)× P(R3)) + 1,
(
d+2
2

)− 1
}

= 4d + 13 (since d ≥ 8) = dimk(IX1 + IX2)d − 1 = dim Sec1(Xλ,2),
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respectively, as we wished.
Now assume that ` ≥ 3. Then by Theorem 2.4 and Corollary 3.4,

expdimSec1(Xλ,2)
= min

{
2 · ((P(R1)× · · ×P(R1)︸ ︷︷ ︸

(s−`)-times

×P(R3)× · · ×P(R3)︸ ︷︷ ︸
`-times

) + 1,
(
d+2
2

)− 1
}

= 4d + 6` + 1 (since d ≥ 3` + 1)
= dimk(IX1 + IX2)d − 1
= dimSec1(Xλ,2),

which completes the proof.

Now we give a question on secant varieties to the variety Xλ,n.

Question 3.6. Is the secant variety Secs−1(Xλ,2) to the variety Xλ,2

non-defective for s > 2 when λ = (1, . . . , 1, 3, . . . , 3)?
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