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LORENTZIAN ALMOST r-PARA-CONTACT
STRUCTURE IN TANGENT BUNDLE

MoHAMMAD NAZRUL ISLAM KHAN* AND JAE-BOK JUN**

ABSTRACT. Almost contact and almost complex structures in the
tangent bundle have been studied by K. Yano and S. Ishihara[5] and
others. In the present paper, we have studied Lorentzian almost r-
para-contact structure in the tangent bundle. Some results related
to Lie-derivative have been studied.

1. Introduction

Let M be a n-dimensional differentiable manifold of C'* class and
T, (M) the tangent space of M at a point p of M. Then the set T'(M) =
Upenr Tp(M) is called the tangent bundle over the manifold M. For any
point p of T'(M), the correspondence p — p determines the bundle pro-
jection m : T'(M) — M. Thus n(p) = p, where 7 : T'(M) — M defines
the bundle projection of T(M) over M. The set 7~ !(p) is called the
fibre over p € M and M the base space.

Vertical lifts:

If f is a function in M, then we write f¥ for the function in T'(M)
obtained by forming the composition of 7 : T'(M) — M and f: M — R
so that f¥ = fox. Thus, if a point p € 71(U) has induced coordinates
(z",y"), then

V@) = 1" (x,y) = for(p) = f(p) = f(2).
Thus the value of fV(5) is constant along each fibre T,(M) and equal
to the value f(p). We call fV the wertical lift of the function f.
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Vertical lifts to a unique algebraic isomorphism of the tensor alge-
bra (M) into the tensor algebra (7'(M)) with respect to constant
coefficients by the conditions

(P2Q)Y =P 2qQ", (P+R)" =P +RY,
where P, () and R are arbitrary elements of (M ).

Complete lifts:

If f is a function in M, then we write f for the function in T'(M)
defined by f¢ = i(df)[4] and call f¢ the complete lift of the function
f. The complete lift f© of a function f has the local expression f¢ =
y'0;f = Of with respect to the induced coordinates in T'(M), where O f
denotes y%0; f.

Suppose that X € I3(M). We define a vector field X© in T(M) by
XCfC = (X £)¢, where f is an arbitrary function in M and call X¢ the
complete lift of X in T(M). The complete lift X¢ of X with components

2" in M has components
h
xC=(7
(o)

with respect to the induced coordinates in T'(M).

Suppose that w € I9(M). Then a 1-form w® in T(M) is defined by
wC(X%) = (w(X))Y, where X is an arbitrary vector field in M. We call
w® the complete lift of w.

The complete lifts to a unique algebra isomorphism of the tensor
algebra (M) into the tensor algebra S (7'(M)) with respect to constant
coeflicients is given by the conditions

P =P @Q" +P " 2Q% (P+R)"=P"+RC,

where P, @ and R are arbitrary elements of S(M).

Horizontal lifts:
The horizontal lift fH of f € SY(M) to the tangent bundle T'(M) is
defined by f# = f¢ — V. f, where V., f = y(Vf).
Let X € 33(M). Then the horizontal lift X of X is defined in T'(M)
by
X" =X -v,Xx,
where V., X = v(VX). The horizontal lift X of X has the components

h
H _ -
* —(—r?:ﬂ)
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with respect to the induced coordinates in T'(M ), where F? =y F;LZ
The horizontal lift S of a tensor field S of arbitrary type in M to
T(M) is defined by
SH =5°_-v,8.
For any P,Q € (M), we have
V,(P®Q)=(V,P)2Q" + P ©(V,Q)
or

2. Almost product structure

Let M be a n-dimensional differentiable manifold of C'° class. If
there exists a tensor field F' of type (1,1) and of C*° class on M such
that

F?=1,

where I denotes the unit tensor field. Then we say that F' gives to M
an almost product structure.

3. Complete lifts of almost product structure and Lorentzian
almost r-para-contact structure in the tangent bundle

Let M be a (2n + r)-dimensional differentiable manifold of C* class
and T'(M) denotes the tangent bundle of M. Suppose that there are
given a tensor field F' of type (1,1), a vector field U, and a 1-form w®

on T (M) satistying

(3.1) FP=1+4) Us®w,
a=1
where
FU, =0,
(3.2) w* o I =0,
w*(Up) = d3.

Thus the manifold M satisfying conditions (3.1) and (3.2) will be said
to possess Lorentzian almost r-para-contact structure([1], [3]).
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THEOREM 3.1. Let M be a differentiable manifold endowed with

Lorentzian almost r-para-contact structure (F,U,,w®). Then

J=F°+UY @wV —US ®w)

is an almost product structure on T(M).

Proof. From (3.1) and (3.2), we have [2]
(3.3) (FOP? =1+ UY @w*® —~UZ @ w™)
and
FCUY =0, FUS =0,
(34) w¥oFY=0, wCoFY =0, w0 FY =0,
wV(UY) =0, w*US) =1, w*(UY) =1, w*“(US) =0.
Let us define an element J of J(T(M)) by

(3.5) J=F°+UY @w? —US ®w©).
Then we find by (3.3), (3.4) and (3.5),
JP=1I
Thus J is an almost product structure in T'(M). O

In view of equation (3.5), we have

JXV = ~(FX)V + (w(X))VUS,

(3.6) JXC = —(FX)? = (w*(X)'Ug = (w*(X)“US.
In particular, we have

(3.7) JXV = —(FX)V, JX¢ = —(FX)°,

(3.8) JuY =u¢, jul =ug,

where X is an arbitrary vector field in M such that w*(X) = 0.

THEOREM 3.2. Let the tangent bundle T'(M) of the manifold M
admits J defined in (3.5). Then for any vector fields X,Y such that
w*(Y) =0, we have

(i) (LXVJ)YV =0,

(i) (LxVJ)Y© ((LXF)Y)VJr((waa)Y)VUE,
(iii) (LXVJ) X (LxUya)V,

(iv) (LxVJ)US = ((LXF)Ua)V+(LXwa(Ua))VU§
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(i) (LxCIYY = —~((LxF)Y)Y + (Lxw*(Y))VUS

i YO = —(LxF)Y)C = ((Lxw?)Y)Ua + (Lxw™)¥)°UC,

Uy = ((LXF)Ua)C + X, ]C + ((LXWO‘)Ua)VUC

US = (LxF)Ua)¢ = [X,Ua]" = (Lxw®(Ua))" U
H(Lxw)Ua)CUE,

where L is the Lie-derivative and [, | is the Lie-Bracket.

Proof. The proof follows easily from (3.4), (3.6), (3.8) and [5]. O

4. Horizontal lifts of Lorentzian almost r-para-contact struc-
ture

Let (F,U,,w®) be Lorentzian almost r-para-contact structure in M
with an affine connection. Then we have form (3.1) and (3.2) and [5],

(FT? = (I +Us@w™)?

(4.1) (FI =T+ (Uy @ w)H
(FT'? =1+U"@w + U, @ w.
Also,
FHEUH — o, FHUY =,
(4.2) WU =0, MUY =1, V(UL =1,

w o f1 =0, w* o f7=0
Let us define a tenser field J* of type (1,1) in T'(M) by
J=FE L UY @u —UH @ wH
Then it is easy to show from (4.1) and (4.2) that
=1,

which means that J* is an almost product structure in 7'(M). Thus we
have

THEOREM 4.1. Let (F,U,,w®) be Lorentzian almost r-para-contact
structure in M with an affine connection V. Then J* is a Lorentzian
almost product structure in T (M).
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