REMARK ON THE MEAN VALUE OF $L\left(\frac{1}{2}, \chi\right)$ IN THE HYPERELLIPTIC ENSEMBLE

Hwanyup Jung*

Abstract

Let $\mathbb{A}=\mathbb{F}_{q}[T]$ be a polynomial ring over \mathbb{F}_{q}. In this paper we determine an asymptotic mean value of quadratic Dirichlet L-functions $L\left(s, \chi_{\gamma D}\right)$ at the central point $s=\frac{1}{2}$, where D runs over all monic square-free polynomials of even degree in \mathbb{A} and γ is a generator of \mathbb{F}_{q}^{*}.

1. Introduction and statement of results

Let $k=\mathbb{F}_{q}(T)$ be a rational function field over the finite field \mathbb{F}_{q} and $\mathbb{A}=\mathbb{F}_{q}[T]$ be the polynomial ring. We assume that $q>3$ is odd. For a nonnegative integer n, let \mathcal{H}_{n} be the set of monic square-free polynomials of degree n in \mathbb{A}. For any $D \in \mathcal{H}_{n}$, let χ_{D} be the quadratic Dirichlet character modulo D defined by the Jacobi symbol $\chi_{D}(N)=\left(\frac{D}{N}\right)$ and $L\left(s, \chi_{D}\right)$ be the quadratic Dirichlet L-function associated to χ_{D}. As $g \rightarrow \infty$, Andrade and Keating determined the asymptotic mean value of $L\left(\frac{1}{2}, \chi_{D}\right)$ over $D \in \mathcal{H}_{2 g+1}([1$, Corollary 2.2]). Their result is the function field analogues of those obtained previously by Jutila [3] in the numberfield setting and is consistent with recent general conjectures for the moments of L-functions by Keating and Snaith [4] motivated by Random Matrix Theory. Recently, Jung determined the asymptotic mean value of $L\left(\frac{1}{2}, \chi_{D}\right)$ over $D \in \mathcal{H}_{2 g+2}$ as $g \rightarrow \infty\left(\left[2\right.\right.$, Corollary 1.3]). Let ∞_{k} be the infinite place of k associated to $1 / T$. If $D \in \mathcal{H}_{2 g+1}$, then ∞_{k} ramifies in $k(\sqrt{D})$, i.e., $k(\sqrt{D})$ is a ramified imaginary quadratic extension of k. If $D \in \mathcal{H}_{2 g+2}$, then ∞_{k} splits in $k(\sqrt{D})$, i.e., $k(\sqrt{D})$ is a real quadratic

[^0]extension of k. Let γ be a generator of \mathbb{F}_{q}^{*}. For any $D \in \mathcal{H}_{2 g+2}, \infty_{k}$ is inert in $k(\sqrt{\gamma D})$, i.e., $k(\sqrt{D})$ is an inert imaginary quadratic extension of k. Set $|N|=q^{\operatorname{deg} N}$ for $0 \neq N \in \mathbb{A}$, and let $\zeta_{\mathbb{A}}(s)=\frac{1}{1-q^{1-s}}$ be the zeta function of \mathbb{A}. Put $\mathrm{P}(s)=\prod_{P}\left(1-(1+|P|)^{-1}|P|^{-s}\right)$, where P runs over all monic irreducible polynomials in \mathbb{A}. The aim of this paper is to determine the asymptotic mean value of $L\left(\frac{1}{2}, \chi_{\gamma D}\right)$ over $D \in \mathcal{H}_{2 g+2}$ as $g \rightarrow \infty$. Our main result is the following theorem and its corollary.

Theorem 1.1. Let q be a power of an odd prime number which is greater than 3. Then we have

$$
\begin{aligned}
& \sum_{D \in \mathcal{H}_{2 g+2}} L\left(\frac{1}{2}, \chi_{\gamma D}\right) \\
= & \frac{\mathrm{P}(1)}{2 \zeta_{\mathbb{A}}(2)}|D|\left\{\log _{q}|D|+\frac{4}{\log q} \frac{\mathrm{P}^{\prime}}{\mathrm{P}}(1)+2(\sqrt{q}+1)\right\}+O\left(|D|^{\frac{3}{4}+\frac{\log _{q} 2}{2}}\right) .
\end{aligned}
$$

Comparing (2.1) with Theorem 1.1, we obtain the following asymptotic mean value.

Corollary 1.2. Under the same assumption of Theorem 1.1, we have

$$
\frac{1}{\# \mathcal{H}_{2 g+2}} \sum_{D \in \mathcal{H}_{2 g+2}} L\left(\frac{1}{2}, \chi_{\gamma D}\right) \sim \mathrm{P}(1)(g+1)
$$

as $g \rightarrow \infty$.

2. Preliminaries

2.1. Quadratic Dirichlet L-function

Let \mathbb{A}^{+}be the set of all monic polynomials in \mathbb{A} and $\mathbb{A}_{n}^{+}=\{N \in$ $\left.\mathbb{A}^{+}: \operatorname{deg} N=n\right\}(n \geq 0)$. The zeta function $\zeta_{\mathbb{A}}(s)$ of \mathbb{A} is defined by the infinite series

$$
\zeta_{\mathbb{A}}(s)=\sum_{N \in \mathbb{A}^{+}}|N|^{-s}
$$

It is straightforward to see that $\zeta_{\mathbb{A}}(s)=\frac{1}{1-q^{1-s}}$. For any square-free $D \in$ \mathbb{A}, the quadratic character χ_{D} is defined by the Jacobi symbol $\chi_{D}(N)=$ $\left(\frac{D}{N}\right)$ and the quadratic Dirichlet L-function $L\left(s, \chi_{D}\right)$ associated to χ_{D} is

$$
L\left(s, \chi_{D}\right)=\sum_{N \in \mathbb{A}^{+}} \chi_{D}(N)|N|^{-s}
$$

We can write $L\left(s, \chi_{D}\right)=\sum_{n=0}^{\infty} \sigma_{n}(D) q^{-n s}$ with $\sigma_{n}(D)=\sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N)$. Since $\sigma_{n}(D)=0$ for $n \geq \operatorname{deg} D, L\left(s, \chi_{D}\right)$ is a polynomial in q^{-s} of degree $\leq \operatorname{deg} D-1$. Putting $u=q^{-s}$, write

$$
\mathcal{L}\left(u, \chi_{D}\right)=\sum_{n=0}^{\operatorname{deg} D-1} \sigma_{n}(D) u^{n}=L\left(s, \chi_{D}\right)
$$

The cardinality of \mathcal{H}_{n} is $\# \mathcal{H}_{1}=q$ and $\# \mathcal{H}_{n}=\left(1-q^{-1}\right) q^{d}(n \geq 2)$. In particular, we have

$$
\begin{equation*}
\# \mathcal{H}_{2 g+2}=(q-1) q^{2 g+1}=\frac{q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \tag{2.1}
\end{equation*}
$$

Fix a generator γ of \mathbb{F}_{q}^{*}. Write $\bar{D}=\gamma D$ for any $D \in H_{2 g+2}$. Since $\left(\frac{\gamma}{N}\right)=$ $(-1)^{\operatorname{deg} N}$, we have $\left(\frac{\bar{D}}{N}\right)=(-1)^{\operatorname{deg} N}\left(\frac{D}{N}\right)$. Hence, $\sigma_{n}(\bar{D})=(-1)^{n} \sigma_{n}(D)$. For $D \in \mathcal{H}_{2 g+2}, \mathcal{L}\left(u, \chi_{\bar{D}}\right)$ has a trivial zero at $u=-1$. The complete L-function $\tilde{\mathcal{L}}\left(u, \chi_{\bar{D}}\right)$ is defined by

$$
\tilde{\mathcal{L}}\left(u, \chi_{\bar{D}}\right)=(1+u)^{-1} \mathcal{L}\left(u, \chi_{\bar{D}}\right) .
$$

It is a polynomial of even degree $2 g$ and satisfies the functional equation

$$
\begin{equation*}
\tilde{\mathcal{L}}\left(u, \chi_{\bar{D}}\right)=\left(q u^{2}\right)^{g} \tilde{\mathcal{L}}\left((q u)^{-1}, \chi_{\bar{D}}\right) \tag{2.2}
\end{equation*}
$$

Lemma 2.1. Let $\chi_{\bar{D}}$ be a quadratic character, where $D \in \mathcal{H}_{2 g+2}$. Then

$$
\begin{aligned}
& \mathcal{L}\left(q^{-\frac{1}{2}}, \chi_{\bar{D}}\right) \\
& =\sum_{n=0}^{g}(-1)^{n} q^{-\frac{n}{2}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N)+(-1)^{g} q^{-\frac{(g+1)}{2}} \sum_{n=0}^{g} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N) \\
& \quad+\sum_{n=0}^{g-1}(-1)^{n} q^{-\frac{n}{2}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N)+(-1)^{g+1} q^{-\frac{g}{2}} \sum_{n=0}^{g-1} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N) .
\end{aligned}
$$

Proof. Write $\tilde{\mathcal{L}}\left(u, \chi_{\bar{D}}\right)=\sum_{n=0}^{2 g} \tilde{\sigma}_{n}(\bar{D}) u^{n}$. Since $\mathcal{L}\left(u, \chi_{\bar{D}}\right)=(1+u)$ $\tilde{\mathcal{L}}\left(u, \chi_{\bar{D}}\right)$, we have $\sigma_{0}(\bar{D})=\tilde{\sigma}_{0}(\bar{D}), \sigma_{n}(\bar{D})=\tilde{\sigma}_{n-1}(\bar{D})+\tilde{\sigma}_{n}(\bar{D})(1 \leq n \leq$ $2 g)$ and $\sigma_{2 g+1}(\bar{D})=\tilde{\sigma}_{2 g}(\bar{D})$, or

$$
\begin{equation*}
\tilde{\sigma}_{n}(\bar{D})=\sum_{i=0}^{n}(-1)^{n-i} \sigma_{i}(\bar{D})(0 \leq n \leq 2 g) \tag{2.3}
\end{equation*}
$$

By substituting $\tilde{\mathcal{L}}\left(u, \chi_{\bar{D}}\right)=\sum_{n=0}^{2 g} \tilde{\sigma}_{n}(\bar{D}) u^{n}$ into (2.2) and equating coefficients, we have $\tilde{\sigma}_{n}(\bar{D})=\tilde{\sigma}_{2 g-n}(\bar{D}) q^{-g+n}$ or $\tilde{\sigma}_{2 g-n}(\bar{D})=\tilde{\sigma}_{n}(\bar{D}) q^{g-n}$.

Hence,

$$
\tilde{\mathcal{L}}\left(u, \chi_{\bar{D}}\right)=\sum_{n=0}^{g} \tilde{\sigma}_{n}(\bar{D}) u^{n}+q^{g} u^{2 g} \sum_{n=0}^{g-1} \tilde{\sigma}_{n}(\bar{D}) q^{-n} u^{-n} .
$$

In particular, we have

$$
\begin{equation*}
\tilde{\mathcal{L}}\left(q^{-\frac{1}{2}}, \chi_{\bar{D}}\right)=\sum_{n=0}^{g} \tilde{\sigma}_{n}(\bar{D}) q^{-\frac{n}{2}}+\sum_{n=0}^{g-1} \tilde{\sigma}_{n}(\bar{D}) q^{-\frac{n}{2}} . \tag{2.4}
\end{equation*}
$$

By substituting (2.3) into (2.4) and using $\sigma_{n}(\bar{D})=(-1)^{n} \sigma_{n}(D)$, we have

$$
\begin{aligned}
\tilde{\mathcal{L}}\left(q^{-\frac{1}{2}}, \chi_{\bar{D}}\right)= & \frac{1}{1+q^{-\frac{1}{2}}} \sum_{n=0}^{g}(-1)^{n} q^{-\frac{n}{2}} \sigma_{n}(D)+\frac{(-1)^{g} q^{-\frac{(g+1)}{2}}}{1+q^{-\frac{1}{2}}} \sum_{n=0}^{g} \sigma_{n}(D) \\
& +\frac{1}{1+q^{-\frac{1}{2}}} \sum_{n=0}^{g-1}(-1)^{n} q^{-\frac{n}{2}} \sigma_{n}(D)+\frac{(-1)^{g+1} q^{-\frac{g}{2}}}{1+q^{-\frac{1}{2}}} \sum_{n=0}^{g-1} \sigma_{n}(D) .
\end{aligned}
$$

So we get the result since $\mathcal{L}\left(q^{-\frac{1}{2}}, \chi_{\bar{D}}\right)=\left(1+q^{-\frac{1}{2}}\right) \tilde{\mathcal{L}}\left(q^{-\frac{1}{2}}, \chi_{\bar{D}}\right)$.

2.2. Contribution of square parts

The square part contributions in the summation of $L\left(\frac{1}{2}, \chi_{\bar{D}}\right)$ over $D \in \mathcal{H}_{2 g+2}$ are given as follow.

Proposition 2.2. We have

$$
\begin{align*}
& \sum_{m=0}^{\left[\frac{g}{2}\right]} q^{-m} \sum_{L \in \mathbb{A}_{m}^{+}} \sum_{\substack{D \in \mathcal{H}_{2 g+2} \\
(L D)=1}} 1 \tag{2.5}\\
& =\frac{\mathrm{P}(1)}{\zeta_{\mathbb{A}}(2)}|D|\left\{\left[\frac{g}{2}\right]+1+\frac{1}{\log q} \frac{\mathrm{P}^{\prime}}{\mathrm{P}}(1)\right\}+O\left(g q^{\frac{3}{2} g+2}\right)
\end{align*}
$$

and

$$
\begin{align*}
& (-1)^{g} q^{-\frac{(g+1)}{2}} \sum_{m=0}^{\left[\frac{g}{2}\right]} \sum_{L \in \mathbb{A}_{m}^{+}} \sum_{\substack{D \in \mathcal{H}_{g}+2 \\
(L, D)=1}} 1 \tag{2.6}\\
& =(-1)^{g} q^{-\frac{(g+1)}{2}+\left[\frac{g}{2}\right]} \mathrm{P}(1)|D|+O\left(g q^{\frac{3}{2} g+\frac{3}{2}}\right) .
\end{align*}
$$

Proof. See Proposition 3.5 in [2].

2.3. Contribution of non square parts

The non square part contributions in the summation of $L\left(\frac{1}{2}, \chi_{\bar{D}}\right)$ over $D \in \mathcal{H}_{2 g+2}$ are given as follow.

Proposition 2.3. We have

$$
\begin{equation*}
\sum_{n=0}^{g}(-1)^{n} q^{-\frac{n}{2}} \sum_{\substack{ \\D \in \mathcal{H}_{2 g+2}}} \sum_{\substack{N \in \mathbb{A}_{n}^{+} \\ N \neq \square}} \chi_{D}(N)=O\left(2^{g+1} q^{\frac{3}{2} g+\frac{3}{2}}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{g} q^{-\frac{(g+1)}{2}} \sum_{n=0}^{g} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{\substack{N \in \mathbb{A}_{n}^{+} \\ N \neq \square}} \chi_{D}(N)=O\left(2^{g+1} q^{\frac{3}{2} g+\frac{3}{2}}\right) \tag{2.8}
\end{equation*}
$$

Proof. As in [1, Lemma 6.4], for any non-square $N \in \mathbb{A}^{+}$, we have

$$
\sum_{D \in \mathcal{H}_{2 g+2}} \chi_{D}(N) \ll q^{g+1} 2^{\operatorname{deg} N-1}
$$

Hence we have

$$
\begin{aligned}
& \sum_{n=0}^{g}(-1)^{n} q^{-\frac{n}{2}} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{\substack{N \in \mathbb{A}_{n}^{+} \\
N \neq \square}} \chi_{D}(N) \\
& \leq \sum_{n=0}^{g} q^{-\frac{n}{2}} \sum_{N \in \mathbb{A}_{n}^{+}} q^{g+1} 2^{n-1} \leq q^{g+1} \sum_{n=0}^{g} 2^{n} q^{\frac{n}{2}} \ll 2^{g+1} q^{\frac{3}{2} g+\frac{3}{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& (-1)^{g} q^{-\frac{(g+1)}{2}} \sum_{n=0}^{g} \sum_{\substack{ \\
N \in \mathcal{H}_{2 g+2}}} \sum_{\substack{N \in \mathbb{A}_{n}^{+} \\
N \neq \square}} \chi_{D}(N) \\
& \leq q^{-\frac{(g+1)}{2}} \sum_{n=0}^{g} \sum_{N \in \mathbb{A}_{n}^{+}} q^{g+1} 2^{n-1} \leq q^{\frac{(g+1)}{2}} \sum_{n=0}^{g} 2^{n} q^{n} \ll 2^{g+1} q^{\frac{3}{2} g+\frac{3}{2}}
\end{aligned}
$$

3. Proof of main theorem

In this section we give the proof of Theorem 1.1. By Lemma 2.1, we have

$$
\begin{align*}
\sum_{D \in \mathcal{H}_{2 g+2}} L\left(\frac{1}{2}, \chi_{\bar{D}}\right)= & \sum_{n=0}^{g}(-1)^{n} q^{-\frac{n}{2}} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N) \tag{3.1}\\
& +(-1)^{g} q^{-\frac{(g+1)}{2}} \sum_{n=0}^{g} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N) \\
& +\sum_{n=0}^{g-1}(-1)^{n} q^{-\frac{n}{2}} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N) \\
& +(-1)^{g+1} q^{-\frac{g}{2}} \sum_{n=0}^{g-1} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N) .
\end{align*}
$$

By (2.5) and (2.7), we have
(3.2) $\sum_{n=0}^{g}(-1)^{n} q^{-\frac{n}{2}} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N)$

$$
=\sum_{n=0}^{g}(-1)^{n} q^{-\frac{n}{2}} \sum_{\substack{ \\D \in \mathcal{H}_{2 g+2}}} \sum_{\substack{N \in \mathbb{A}_{n}^{+} \\ N=\square}} \chi_{D}(N)
$$

$$
+\sum_{n=0}^{g}(-1)^{n} q^{-\frac{n}{2}} \sum_{\substack{D \in \mathcal{H}_{2 g+2}}} \sum_{\substack{N \in \mathbb{A}_{n}^{+} \\ N \neq \square}} \chi_{D}(N)
$$

$$
=\sum_{m=0}^{\left[\frac{g}{2}\right]} q^{-m} \sum_{\substack{ \\L \in \mathbb{A}_{m}^{+}}} \sum_{\substack{D \in \mathcal{H}_{2 g+2} \\(L, D)=1}} 1+\sum_{n=0}^{g}(-1)^{n} q^{-\frac{n}{2}} \sum_{\substack{D \in \mathcal{H}_{2 g+2}}} \sum_{\substack{N \in \mathbb{A}_{n}^{+} \\ N \neq \square}} \chi_{D}(N)
$$

$$
=\frac{\mathrm{P}(1)}{\zeta_{\mathbb{A}}(2)}|D|\left\{\left[\frac{g}{2}\right]+1+\frac{1}{\log q} \frac{\mathrm{P}^{\prime}}{\mathrm{P}}(1)\right\}+O\left(2^{g+1} q^{\frac{3}{2} g+\frac{3}{2}}\right)
$$

and, by (2.6) and (2.8), we have

$$
\begin{align*}
& (-1)^{g} q^{-\frac{(g+1)}{2}} \sum_{n=0}^{g} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N) \tag{3.3}\\
& =(-1)^{g} q^{-\frac{(g+1)}{2}} \sum_{n=0}^{g} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{\substack{N \in \mathbb{A}_{n}^{+} \\
N=\square}} \chi_{D}(N) \\
& \quad+(-1)^{g} q^{-\frac{(g+1)}{2}} \sum_{n=0}^{g} \sum_{\substack{ }} \sum_{\substack{ \\
\mathcal{H}_{2 g+2}}} \chi_{D}(N) \\
& N \neq \square \\
& =(-1)^{g} q^{-\frac{(g+1)}{2}} \sum_{m=0}^{\left[\frac{g}{2}\right]} \sum_{L \in \mathbb{A}_{m}^{+}} \sum_{\substack{D \in \mathcal{H}_{2 g+2} \\
(L, D)=1}} 1+(-1)^{g} q^{-\frac{(g+1)}{2}} \sum_{n=0}^{g} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N) \\
& =(-1)^{g} q^{-\frac{(g+1)}{2}}+\left[\frac{g}{2}\right] \\
& P(1)|D|+O\left(2^{g+1} q^{\frac{3}{2} g+\frac{3}{2}}\right) .
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& \sum_{n=0}^{g-1}(-1)^{n} q^{-\frac{n}{2}} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N) \tag{3.4}\\
& =\frac{\mathrm{P}(1)}{\zeta_{\mathbb{A}}(2)}|D|\left\{\left[\frac{g-1}{2}\right]+1+\frac{1}{\log q} \frac{\mathrm{P}^{\prime}}{\mathrm{P}}(1)\right\}+O\left(2^{g} q^{\frac{3}{2} g+\frac{1}{2}}\right)
\end{align*}
$$

and

$$
\begin{align*}
& (-1)^{g+1} q^{-\frac{g}{2}} \sum_{n=0}^{g-1} \sum_{D \in \mathcal{H}_{2 g+2}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N) \tag{3.5}\\
& =(-1)^{g+1} q^{-\frac{g}{2}+\left[\frac{g-1}{2}\right]} \mathrm{P}(1)|D|+O\left(2^{g} q^{\frac{3}{2} g}\right) .
\end{align*}
$$

By inserting (3.2), (3.3), (3.4) and (3.5) into (3.1), we have

$$
\begin{aligned}
& \sum_{D \in \mathcal{H}_{2 g+2}} L\left(\frac{1}{2}, \chi_{\bar{D}}\right) \\
= & \frac{\mathrm{P}(1)}{2 \zeta_{\mathbb{A}}(2)}|D|\left\{\log _{q}|D|+\frac{4}{\log q} \frac{\mathrm{P}^{\prime}}{\mathrm{P}}(1)+2(\sqrt{q}+1)\right\}+O\left(|D|^{\frac{3}{4}+\frac{\log _{q} 2}{2}}\right) .
\end{aligned}
$$

The Corollary 1.2 follows immediately from Theorem 1.1 by using (2.1) and computing the limit as $g \rightarrow \infty$.

References

[1] J. C. Andrade and J. P. Keating, The mean value of $L\left(\frac{1}{2}, \chi\right)$ in the hyperelliptic ensemble. J. Number Theory 132 (2012), no. 12, 2793-2816.
[2] H. Jung, Note on the mean value of $L\left(\frac{1}{2}, \chi\right)$ in the hyperelliptic ensemble. To appear in Int. J. Number Theory.
[3] M. Jutila, On the mean value of $L\left(\frac{1}{2}, \chi\right)$ for real characters. Analysis 1 (1981), no. 2, 149-161.
[4] J. P. Keating and N. C. Snaith, Random matrix theory and L-functions at $s=1 / 2$. Comm. Math. Phys. 214 (2000), no. 1, 91-110.

Department of Mathematics Education Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: hyjung@chungbuk.ac.kr

[^0]: Received June 10, 2013; Accepted October 18, 2013.
 2010 Mathematics Subject Classification: Primary 11R18, 11R58.
 Key words and phrases: asymptotic mean value, quadratic Dirichlet L-functions, function fields.

 This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2010-0008139).

