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CHEMICAL HYPERSTRUCTURES OF CHEMICAL
REACTIONS FOR IRON AND INDIUM

Kang Moon Chun*

Abstract. In this paper, we investigate chemical hyperstructures of chem-
ical reactions for iron and indium using hyperstructure theory.

1. Introduction

F. Marty [5] was the first to introduce the theory of algebraic hyperstruc-
tures that is generalization of the concept of algebraic structures in 1934.
Corsini [1], Corsini and Leoreanu [2] et al. studied for the connection between
hyperstructures and binary relations. Also we can know that Vougiouklis [6]
studied the class of Hv-groups and their several properties. B. Davvaz, A. D.
Nezhad and A. Benvidi especially showed ternary algebraic hyperstructures in
chain reactions and chemical hyperalgebra in dismutation reactions [3, 4]. In
2012[4], they had chemical hyperstructures for a set of tin and a set of indium.

In this paper, we study chemical hyperstructures of standard reduction
potentials for three consecutive oxidation states of elements of iron and indium.
The chemical hyperstructure of the set of tin [4] and the set of iron (Theorem
3.2) are equal. But, for the case of the set of indium ions, we have obtained a
different hyperoperation table (Theorem 3.4) of B. Davvaz, A. D. Nezhad and
A. Benvidi’s result([4], p. 60).

2. Algebraic hyperstructures

Let H be a non-empty set and · : H ×H −→ ℘∗(H) be a function, where
℘∗(H) is the set of all non-empty subsets of H. Then the function · is called a
hyperoperation on H and the couple (H, ·) is called a hypergroupoid. For two
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subsets A,B of H, we define A ·B = ∪a∈A,b∈Ba · b, and for a singleton {a} we
denote {a} ·B = a ·B and B · {a} = B · a.

The hypergroupoid (H, ·) is called a semihypergroup if

x · (y · z) = (x · y) · z, for all x, y, z ∈ H.

The hypergroupoid (H, ·) is called an Hv-semigroup if

x · (y · z) ∩ (x · y) · z 6= ∅, for all x, y, z ∈ H.

The hypergroupoid (H, ·) is called a quasihypergroup if

x ·H = H · x = H, for all x ∈ H.

The hyperoperation (·) is called commutative if

x · y = y · x, for all x, y ∈ H.

The hypergroupoid (H, ·) is called a hypergroup if it is a semihypergroup
and a quasihypergroup.

The hypergroupoid (H, ·) is called an Hv-group if it is an Hv-semigroup
and a quasihypergroup.

The hypergroupoid (H, ·) is called a commutative hypergroup if it is a hy-
pergroup with a commutative hyperoperation (·).

The hypergroupoid (H, ·) is called a commutative Hv-group if it is an Hv-
group with a commutative hyperoperation (·).

3. Chemical hyperstructures of chemical reactions for iron and
indium

Most of elements have oxidation states of positive, negative, and zero value;
in addition, most of transition metals have two positive oxidation states and
some have more. Reactions in which electrons are exchanged are referred to
as oxidation-reduction reactions or redox reactions. This reaction are involved
in the synthesis of sodium chloride from the reaction of elemental sodium and
chlorine and metal corrosion reaction, and providing energy for cells to carry
out daily life processes etc.

For redox reactions that occur in acidic and/or basic solutions, it is useful
to separate the reaction into two half reactions: one involving oxidation and
the other involving reduction. Electrochemistry is defined as the study of the
interchange of chemical and electrical energy. In thermodynamics, sponta-
neous chemical reaction generates electricity and the opposite process, the use
of electricity occurs chemical change.
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The accepted convention is to give the potentials of half reactions as reduc-
tion process. The E◦ values corresponding to reduction half reactions with all
solutes at 1 mol and all gases at 1 atm are called standard reduction potentials.
In an electrochemical cell, the over all cell EMF, E◦ cell, is calculated to be
the sum of the potentials of the two half reactions. And also if the reaction
occurs under reversible conditions, the EMF can be related to the free energy
change by the equation

4G◦ = −nFE◦,
where 4G◦ is the free energy change, n is the number of equivalents oxidized
or reduced and F is the the Faraday constant (9.64853× 104C/mol).

Through the Latimer diagrams of all elements, we selected iron (Fe) and in-
dium (In) that were recorded three consecutive standard reduction potentials
in acidic solutions.

In [7], we obtain

Fe3+ Fe2+ Fe.-0.771 -−0.44

−0.04 6

an element iron(Fe) in the oxidation states 0 and 4+ can comproportionate
to the state 2+. Therefore, the comproportionation reaction

Fe + Fe3+ −→ 2Fe2+

is spontaneous since EMF(0.77 + 0.44) is positive.
In [8], we obtain

In3+ In+ In.-−0.444 -−0.126

−0.338 6

But the comproportionation reaction

In + In3+ −→ 2In+

is not spontaneous since EMF(−0.444 + 0.126) is negative.
The products from the comproportionation of the two elements are dif-

ferent. Therefore, we used a mathematical operation to find the difference
between the iron and the indium in the Latimer diagrams.

Definition 3.1. Let G be a set of two or more chemical species and a
hyperoperation ⊕ on G is defined as follows; for all x, y ∈ G, x⊕ y is defined
the major product, that is, it is selected from the largest combination among
all spontaneous redox reactions.



322 Kang Moon Chun

The following reactions are all possible redox combinations for the set
{Fe, Fe2+, F e3+}.

Fe + Fe −→ Fe + Fe, [0 + 0 = 0].

Fe + Fe2+ −→
{

Fe2+ + Fe, [0.44 + (−0.44) = 0];
Fe3+ + Fe, [0.04 + (−0.44) = −0.40].

Fe + Fe3+ −→





Fe2+ + Fe, [0.44 + (−0.04) = 0.40];
Fe2+ + Fe2+, [0.44 + 0.771 = 1.211];
Fe3+ + Fe, [0.04 + (−0.04) = 0];
Fe3+ + Fe2+, [0.04 + 0.771 = 0.811].

Fe2+ + Fe2+ −→
{

Fe + Fe3+, [−0.44 + (−0.771) = −1.211];
Fe2+ + Fe2+, [ 0 + 0 = 0].

Fe2+ + Fe3+ −→
{

Fe3+ + Fe, [−0.771 + (−0.04) = −0.811];
Fe3+ + Fe2+, [−0.771 + 0.771 = 0].

Fe3+ + Fe3+ −→ Fe3+ + Fe3+, [0 + 0 = 0].
The underline is the major product. Then we obtain the following hyper-
operation table for the set {Fe, Fe2+, F e3+}:

⊕ Fe Fe2+ Fe3+

Fe Fe Fe, Fe2+ Fe2+

Fe2+ Fe, Fe2+ Fe2+ Fe2+, F e3+

Fe3+ Fe2+ Fe2+, Fe3+ Fe3+

In the above table, if we change the name from Fe, Fe2+ and Fe3+ to a,
b and c, respectively, then the following Theorem 3.2 holds.

Theorem 3.2. Let GFe = {a, b, c} and ⊕ be the hyperoperation on GFe.
Consider the following commutative hyperoperation table:

⊕ a b c
a {a} {a, b} {b}
b {a, b} {b} {b, c}
c {b} {b, c} {c}

Then the hyperstructure (GFe,⊕) is a commutative Hv-semigroup.

Proof. For all x, y, z ∈ GFe, we have



[x⊕ (y ⊕ z)] ∩ [(x⊕ y)⊕ z] = {a}, if x = a, y = a, z = a;
[x⊕ (y ⊕ z)] ∩ [(x⊕ y)⊕ z] = {c}, if x = c, y = c, z = c;
[x⊕ (y ⊕ z)] ∩ [(x⊕ y)⊕ z] 3 b, otherwise.

Thus [x⊕ (y ⊕ z)] ∩ [(x⊕ y)⊕ z] 6= ∅ for all x, y, z ∈ GFe.

Remark 3.3. In Theorem 3.2 c⊕ (a⊕ a) = c⊕ a = {b} and (c⊕ a)⊕ a =
b⊕a = {a, b}. Thus c⊕(a⊕a) 6= (c⊕a)⊕a. Hence GFe is not a semihypergroup.
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For the case iron (Fe), we have the same hyperoperation table for the set
{Sn, Sn2+, Sn4+} of tin (Sn) in ([4], p. 58). But, for the case indium (In),
we have a different hyperoperation table for the set {In, In+, In3+} of indium
(In) in ([4], p. 60).

The following are all possible redox combinations for the set {In, In+, In3+}.
In + In −→ In + In, [0 + 0 = 0].

In + In+ −→
{

In+ + In, [0.126 + (−0.126) = 0];
In3+ + In, [0.338 + (−0.126) = 0.212].

In + In3+ −→





In+ + In, [ 0.126 + (−0.338) = −0.212];
In+ + In+, [ 0.126 + (−0.444) = −0.318];
In3+ + In, [ 0.338 + (−0.338) = 0];
In3+ + In+, [ 0.338 + (−0.444) = −0.106].

In+ + In+ −→
{

In + In3+, [−0.126 + 0.444 = 0.318];
In+ + In+, [ 0 + 0 = 0].

In+ + In3+ −→
{

In3+ + In, [0.444 + (−0.338) = 0.106];
In3+ + In+, [0.444 + (−0.444) = 0].

In3+ + In3+ −→ In3+ + In3+, [0 + 0 = 0].
The underline is the major product. Then we obtain the following hyper-
operation table for the set {In, In+, In3+}:

⊕ In In+ In3+

In In In, In3+ In, In3+

In+ In, In3+ In, In3+ In, In3+

In3+ In, In3+ In, In3+ In3+

In the above table, if we change the name from In, In+ and In3+ to a, b
and c, respectively, then the following theorem holds.

Theorem 3.4. Let GIn = {a, b, c} and ⊕ be the hyperoperation on GIn.
Consider the following commutative hyperoperation table:

⊕ a b c
a {a} {a, c} {a, c}
b {a, c} {a, c} {a, c}
c {a, c} {a, c} {c}

Then the hyperstructure (GIn,⊕) is a commutative semihypergroup.

Proof. For all x, y, z ∈ GIn, we have

x⊕ (y ⊕ z) = (x⊕ y)⊕ z =




{a}, if x = a, y = a, z = a;
{c}, if x = c, y = c, z = c;
{a, c}, otherwise.
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Thus x⊕ (y ⊕ z) = (x⊕ y)⊕ z for all x, y, z ∈ GIn.

Next we give another chemical hyperoperation.

Definition 3.5. Let G be a set of two or more chemical species and a
hyperoperation ⊕′ on G is defined as follows; for all x, y, x′, y′ ∈ G, consider
the following all possible combinations for oxidation-reduction reactions

x + y -
β

α
x′ + y′

where α and β are potential differences. We define x⊕′ y as follows;

x⊕′ y =
{ ∪α+β>0{x′, y′}, whenever x + y → x′ + y′;
{x, y}, otherwise.

Theorem 3.6. We have the following.

(1) Let GFe = {a, b, c} and let a = Fe, b = Fe2+ and c = Fe3+. Then we
have the following commutative hyperoperation table:

⊕′ a b c
a {a} {a, b} {a, b, c}
b {a, b} {b} {b, c}
c {a, b, c} {b, c} {c}

and the hyperstructure (GFe,⊕′) is a commutative hypergroup.
(2) Let GIn = {a, b, c} and let a = In, b = In+ and c = In3+. Then we

have the following commutative hyperoperation table:

⊕′ a b c
a {a} {a, c} {a, c}
b {a, c} {a, c} {a, c}
c {a, c} {a, c} {c}

and the hyperstructure (GIn,⊕′) is a commutative semihypergroup. In
this case, both (GIn,⊕) and (GIn,⊕′) are the same semihypergroup.

Proof. (1) Using all possible redox combinations(page 322) for the set of
iron, we get the hyperoperation tables.

For all x, y, z ∈ GFe we have

x⊕′(y⊕′z) = (x⊕′y)⊕′z =





{a}, if x = a, y = a, z = a;
{b}, if x = b, y = b, z = b;
{c}, if x = c, y = c, z = c;
{a, b}, {b, c} or {a, b, c}, otherwise.

Clearly for all x ∈ GFe we have x⊕′ GFe = GFe ⊕′ x = GFe.
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(2) Using all possible redox combinations for the set {In, In2+, In3+}(page
323), we get the hyperoperation tables. The proof is similar to the proof of
Theorem 3.4.
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