JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 27, No. 2, May 2014 http://dx.doi.org/10.14403/jcms.2014.27.2.297

SOME PROPERTIES OF DERIVATIONS ON CI-ALGEBRAS

Yong Hoon Lee* and Min Surp Rhee**

ABSTRACT. The present paper gives the notion of a derivation on a CI-algebra X and investigates related properties. We define a set $Fix_d(X)$ by $Fix_d(X) = \{x \in X \mid d(x) = x\}$, where d is a derivation on a CI-algebra X. We show that $Fix_d(X)$ is a subalgebra of X. Also, we prove some one-to-one and onto derivation theorems. Moreover, we study a regular derivation on a CI-algebra and an isotone derivation on a transitive CI-algebra.

1. Introduction

The notion of a BCK-algebra was proposed by Y. Imai and K. Iséki in 1966 [1]. In the same year, K. Iséki introduced the notion of a BCIalgebra [2], which is a generalization of a BCK-algebra. H. S. Kim and Y. H. Kim defined a BE-algebra as a dualization of generalization of a BCK-algebra [4]. In [5], B. L. Meng introduced the notion of a CIalgebra as a generalization of a BE-algebra. Y. B. Jun and X. L. Xin applied the notion of a derivation on a BCI-algebra which is defined in a way similar to the notion of derivation in ring and near-ring theory [3]. In fact, the notion of a derivation in ring theory is quite old and plays a significant role in analysis, algebraic geometry and algebra. In this paper we introduce the notion of a derivation on a CI-algebra and obtain some properties related to it. In Section 2, we recall some definitions and some properties for a CI-algebra. In Section 3, we not only prove some one-toone and onto derivation theorems, but also we study a regular derivation on a CI-algebra and an isotone derivation on a transitive CI-algebra.

2010 Mathematics Subject Classification: Primary 06F35, 03G25, 08A30.

Received March 03, 2014; Accepted April 07, 2014.

Key words and phrases: CI-algebra, self-distributive, derivation, transitive, isotone.

Correspondence should be addressed to Min Surp Rhee, msrhee@dankook.ac.kr.

2. Preliminaries

We review some definitions and properties that will be used later.

DEFINITION 2.1. [5] Let X be a nonempty set, and let * be a binary operation on X. Then (X, *, 1) is said to be a CI-algebra if the following axioms are satisfied:

 $\begin{array}{ll} ({\rm CI1}) \ x*x = 1. \\ ({\rm CI2}) \ 1*x = x. \\ ({\rm CI3}) \ x*(y*z) = y*(x*z) \ {\rm for \ all} \ x,y,z \in X. \end{array}$

In the above definition we simply say that X is a CI-algebra. In [6], the author defined a binary relation \leq by $x \leq y$ if and only if x * y = 1, where $x, y \in X$.

A CI-algebra X is said to be *self-distributive* if x*(y*z) = (x*y)*(x*z)for all $x, y, z \in X$ [5]. A nonempty subset S of a CI-algebra X is said to be a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$. Also, we define a binary operation \lor on a CI-algebra X by $x \lor y = (y * x) * x$.

PROPOSITION 2.2. [5] Let x, y be arbitrary elements of a CI-algebra X. Then:

- (1) y * ((y * x) * x) = 1.
- (2) (x*1)*(y*1) = (x*y)*1.
- (3) $1 \le x$ implies x = 1 for all $x, y \in X$.

DEFINITION 2.3. [5] A CI-algebra X is said to be *transitive* if

$$(y * z) * ((x * y) * (x * z)) = 1$$
, for all $x, y, z \in X$.

EXAMPLE 2.4. Let $X = \{1, a, b, c\}$ be a CI-algebra, where * is defined as follows:

*	1	a	b	c
1	1	a	b	c
a	1	1	a	a
b	1	1	1	a
c	1	1	a	1

Then X is a transitive CI-algebra.

Note that if X is a self-distributive CI-algebra, then X is a transitive CI-algebra.

PROPOSITION 2.5. [7] Let X be a CI-algebra. If X is transitive, then:

(1) $y \le z$ implies $x * y \le x * z$.

(2) $y \leq z$ implies $z * x \leq y * x$ for all $x, y, z \in X$.

DEFINITION 2.6. [7] A nonempty subset of F of a CI-algebra X is said to be a filter of X if the following axioms are satisfied: (F1) $1 \in F$. (F2) $x \in F$ and $x * y \in F$ imply $y \in F$.

3. Derivations on CI-algebras

We start this section with the definition of a derivation on a CIalgebra X.

DEFINITION 3.1. [3] Let X be a CI-algebra. A map $d: X \to X$ is said to be a *right-left derivation* ((r, l)-*derivation*) on X if it satisfies the identity

$$d(x * y) = (x * d(y)) \lor (d(x) * y)$$

for all $x, y \in X$. Similarly, a map d is said to be a *left-right derivation* ((l, r)-derivation) on X if it satisfies the identity

$$d(x * y) = (d(x) * y) \lor (x * d(y))$$

for all $x, y \in X$. Moreover, if d is both a (l, r)-derivation and a (r, l)-derivation, then d is called a *derivation* on X.

EXAMPLE 3.2. Let $X = \{1, a, b\}$ be a CI-algebra, where * is defined as follows:

Then the map $d: X \to X$ defined by

$$d(x) = \begin{cases} 1 & \text{if } x = 1, \ b \\ a & \text{if } x = a \end{cases}$$

is a derivation on X.

EXAMPLE 3.3. Let $X = \{1, a, b, c\}$ be a CI-algebra, where * is defined as follows:

Then the map $d: X \to X$ defined by

$$d(x) = \begin{cases} 1 & \text{if } x = 1, a \\ a & \text{if } x = c \\ b & \text{if } x = b \end{cases}$$

is a derivation on X.

A map d on a CI-algebra X is said to be *regular* if d(1) = 1 [3]. Then we get two propositions for a regular map.

PROPOSITION 3.4. Let d be a regular map on a CI-algebra X. Then the following properties are satisfied:

(1) If d is a (l, r)-derivation of X, then $d(x) = x \vee d(x)$ for every $x \in X$.

(2) If d is a (r, l)-derivation of X, then $d(x) = d(x) \lor x$ for every $x \in X$.

Proof. Note that d(1) = 1 and 1 * x = x for every $x \in X$.

(1) If d is a (l, r)-derivation on X, then by Definition 3.1, we get $d(r) = d(1 + r) = (d(1) + r) \vee (1 + d(r)) = r \vee (d(r))$

$$d(x) = d(1 * x) = (d(1) * x) \lor (1 * d(x)) = x \lor d(x)$$

for every $x \in X$.

(2) If d is a (r, l)-derivation on X, then by Definition 3.1, we get

$$d(x) = d(1 * x) = (1 * d(x)) \lor (d(1) * x) = d(x) \lor x$$

for every $x \in X$.

PROPOSITION 3.5. Let d be a derivation on a CI-algebra X. If x*1 = 1 for every $x \in X$, then d(1) = 1. That is, d is a regular derivation on X.

Proof. Let d be a (r, l)-derivation on X. Then by hypothesis we have

$$d(1) = d(x * 1)$$

= $(x * d(1)) \lor (d(x) * 1)$ (since Definition 3.1)
= $(x * d(1)) \lor 1$
= $(1 * (x * d(1))) * (x * d(1))$ (since $x \lor y = (y * x) * x$)
= $(x * d(1)) * (x * d(1)) = 1$

for every $x \in X$. Hence d is a regular (r, l)-derivation on X. Similarly, let d be a (l, r)-derivation on X. Then by hypothesis we have

> d(1) = d(x * 1)= $(d(x) * 1) \lor (x * d(1))$ (since Definition 3.1) = $1 \lor (x * d(1))$ (since $x \lor y = (y * x) * x$) = 1

300

for every $x \in X$. Hence d is a regular (l, r)-derivation on X. Therefore d is a regular derivation on X.

Now, we study some properties of a derivation on a CI-algebra X.

PROPOSITION 3.6. Let d be a derivation on a CI-algebra X and let $x \in X$. If x * 1 = 1, then x * ((d(x) * x) * x) = x * ((x * d(x)) * d(x)).

Proof. By Proposition 3.4, $d(x) = d(x) \lor x = x \lor d(x)$. Hence $x \ast d(x) = x \ast (d(x) \lor x) = x \ast ((x \ast d(x)) \ast d(x))$ and $x \ast d(x) = x \ast (x \lor d(x)) = x \ast ((d(x) \ast x) \ast x)$. Thus we get $x \ast ((d(x) \ast x) \ast x) = x \ast ((x \ast d(x)) \ast d(x))$. \Box

PROPOSITION 3.7. Let d be a (r, l)-derivation on a CI-algebra X. Then:

(1) $x \leq d(x)$ for every $x \in X$.

(2) If X is transitive, $d(x) * y \le x * y \le x * d(y)$ for all $x, y \in X$.

Proof. (1) By Definition 2.1 (CI3) and Proposition 3.4 (2), we have

$$x * d(x) = x * (d(x) \lor x) = x * ((x * d(x)) * d(x))$$

= (x * d(x)) * (x * d(x)) = 1

for every $x \in X$. Hence $x \leq d(x)$.

(2) By (1) and Proposition 2.5, we have $d(x) * y \le x * y \le x * d(y)$ for all $x, y \in X$.

THEOREM 3.8. Let d be a (r, l)-derivation on a transitive CI-algebra X. Then d(x * y) = x * d(y) for all $x, y \in X$.

Proof. Let d be a (r, l)-derivation on X and let $x, y \in X$. Then by Proposition 3.7 (2) we have $d(x) * y \leq x * d(y)$. Hence we get

$$d(x * y) = (x * d(y)) \lor (d(x) * y)$$

= ((d(x) * y) * (x * d(y))) * (x * d(y))
= 1 * (x * d(y)) = x * d(y).

PROPOSITION 3.9. Let d be a map on a CI-algebra X and let $x, y \in X$. Then:

(1) If d is a (l, r)-derivation on X, then $x * d(y) \le d(x * y)$.

(2) If d is a (r, l)-derivation on X, then $d(x) * y \le d(x * y)$.

(3) If d is a regular (r, l)-derivation on X, then d(x * d(x)) = 1.

Proof. (1) Let d be a (l, r)-derivation of X. Then note that

$$d(x * y) = (d(x) * y) \lor (x * d(y))$$

= ((x * d(y)) * (d(x) * y)) * (d(x) * y).

Hence (x*d(y))*d(x*y) = (x*d(y))*(((x*d(y))*(d(x)*y))*(d(x)*y)) = 1 for all $x, y \in X$ and so we get $x*d(y) \le d(x*y)$.

(2) Let d be a (r, l)-derivation on X. Then note that

$$\begin{aligned} d(x*y) &= (x*d(y)) \lor (d(x)*y) \\ &= ((d(x)*y)*(x*d(y)))*(x*d(y)). \end{aligned}$$

Hence (d(x)*y)*d(x*y) = (d(x)*y)*(((d(x)*y)*(x*d(y)))*(x*d(y))) = 1 for all $x, y \in X$ and so we get $d(x) * y \le d(x * y)$.

(3) If d is a (r, l)-derivation on X, then by Proposition 3.7 (1) and by hypothesis, we get d(x * d(x)) = d(1) = 1 for every $x \in X$.

PROPOSITION 3.10. Let X be a CI-algebra. If d_1, d_2, \dots, d_n are regular (r, l)-derivations on X, then $x \leq d_n(d_{n-1}(\dots(d_2(d_1(x)))\dots))$ for every $n \in \mathbb{N}$.

Proof. For n = 1, we get

 $d_1(x) = d_1(1 * x) = (1 * d_1(x)) \lor (d_1(1) * x) = d_1(x) \lor x = (x * d_1(x)) * d_1(x).$

Then by Definition 2.1 we have

$$x * d_1(x) = x * ((x * d_1(x)) * d_1(x)) = (x * d_1(x)) * (x * d_1(x)) = 1.$$

Hence $x \leq d_1(x)$.

Suppose that $x \leq d_n(d_{n-1}(...(d_2(d_1(x)))...))$ for any positive integer $n \geq 2$. For simplicity, let

$$D_n = d_n(d_{n-1}(...(d_2(d_1(x)))...))$$

Then

$$d_{n+1}(D_n) = d_{n+1}(1 * D_n) = (1 * d_{n+1}(D_n)) \lor (d_{n+1}(1) * D_n)$$

= $d_{n+1}(D_n) \lor D_n = (D_n * d_{n+1}(D_n)) * d_{n+1}(D_n).$

Hence $D_n * D_{n+1} = 1$, which implies $D_n \leq D_{n+1}$. By assumption, we get $x \leq D_n \leq D_{n+1}$. Therefore Proposition 3.10 holds.

Let d be a map on a CI-algebra X. Define a set $Fix_d(X)$ by

$$Fix_d(X) = \{x \in X \mid d(x) = x\}.$$

Now, we write $d^2(x)$ for $(d \circ d)(x)$, where \circ is a composition.

PROPOSITION 3.11. Let d be a derivation on a CI-algebra X and let $x, y \in Fix_d(X)$. Then:

- (1) $d(x) \in Fix_d(X)$. Hence $Fix_d(X) \subset Fix_{d^2}(X)$.
- (2) $x * y \in Fix_d(X)$. That is, $Fix_d(X)$ is a subalgebra of X.
- (3) $x \lor y \in Fix_d(X)$.

Proof. (1) Note that $d^2(x) = d(d(x)) = d(x) = x$ for every $x \in Fix_d(X)$. Hence $d(x) \in Fix_d(X)$ and $x \in Fix_{d^2}(X)$. Thus $Fix_d(X) \subset Fix_{d^2}(X)$.

(2) Let $x, y \in Fix_d(X)$. Then we get d(x) = x and d(y) = y. Hence $d(x + y) = (x + d(y)) \lor (d(x) + y) = (x + y) \lor (x + y) = x + y$

$$a(x * y) = (x * a(y)) \lor (a(x) * y) = (x * y) \lor (x * y) = x * y$$

So $x * y \in Fix_d(X)$. Therefore $Fix_d(X)$ is a subalgebra of X. (3) Let $x, y \in Fix_d(X)$. Then we get

$$d(x \lor y) = d((y * x) * x)$$

= $((y * x) * d(x)) \lor (d(y * x) * y)$
= $((y * x) * x) \lor ((y * d(x) \lor d(y) * x) * x)$
= $((y * x) * x) \lor ((y * x) * x)$
= $(y * x) * x = x \lor y$

since $x \lor x = (x * x) * x = 1 * x = x$.

In the above proposition we say that d is idempotent if $d^2(x) = x$.

PROPOSITION 3.12. Let d be a (r, l)-derivation of a self-distributive CI-algebra X. If $y \in Fix_d(X)$, then $x * y \in Fix_d(X)$ for every $x \in X$.

Proof. Let $y \in Fix_d(X)$. Then d(y) = y. By Definition 2.1 (CI3) and Proposition 3.7 (1), we have

$$\begin{aligned} d(x*y) &= (x*d(y)) \lor (d(x)*y) = ((d(x)*y)*(x*y))*(x*y) \\ &= (x*((d(x)*y)*y))*(x*y) \\ &= ((x*(d(x)*y))*(x*y))*(x*y) \\ &= (((x*d(x))*(x*y))*(x*y))*(x*y) \\ &= (((x*d(x))*(x*y))*(x*y))*(x*y) \\ &= ((1*(x*y))*(x*y))*(x*y) \\ &= ((x*y)*(x*y))*(x*y) = 1*(x*y) = x*y. \end{aligned}$$

This completes the proof.

By Proposition 3.11 (1) we know $Fix_d(X)$ is a subset of $Fix_{d^2}(X)$. But in general $Fix_{d^2}(X)$ is not a subset of $Fix_d(X)$. Also, if $x \in Fix_d(X)$, then $d(x) \in Fix_d(X)$. But there is an element $x \notin Fix_d(X)$ even though $d(x) \in Fix_d(X)$. In fact, $d(b) \in Fix_d(X)$ but $b \notin Fix_d(X)$ in Example 3.2.

THEOREM 3.13. Let d be a derivation on a CI-algebra X. If $d(x) \in Fix_d(X)$ for every $x \in X$, then the following conditions are equivalent:

- (1) d(x) = x for every $x \in X$.
- (2) d is a one-to-one derivation.
- (3) d is a onto derivation.

Proof. $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$ are clear.

(2) \Rightarrow (1) Let d be a one-to-one derivation and let $x \in X$. Since $d(x) \in Fix_d(X)$, we have d(d(x)) = d(x). Since d is one-to-one, we get d(x) = x for every $x \in X$.

(3) \Rightarrow (1) Let d be a onto derivation and let $x \in X$. Then there exists $y \in X$ such that d(y) = x. Since $d(x) \in Fix_d(X)$, we have d(x) = d(d(y)) = d(y) = x.

Let d be a map on a CI-algebra X. Define the kernel of d, denoted by Kerd,

$$Kerd = \{x \in X \mid d(x) = 1\}.$$

PROPOSITION 3.14. Let d be a (r, l)-derivation on a CI-algebra X. If x * 1 = 1 for every $x \in X$, then Kerd is a subalgebra of X.

Proof. Let $x, y \in Kerd$. Then d(x) = 1 and d(y) = 1. Hence we have

 $d(x * y) = (x * d(y)) \lor (d(x) * y) = (x * 1) \lor (1 * y) = 1 \lor y = 1.$

So $x * y \in Kerd$. Therefore Kerd is a subalgebra of X.

A CI-algebra X is said to be *commutative* if (y * x) * x = (x * y) * y for all $x, y \in X$.

PROPOSITION 3.15. Let d be a (r, l)-derivation on a commutative CIalgebra X and let $x \leq y$. If $x \in Kerd$ and z * 1 = 1 for every $z \in X$, then $y \in Kerd$.

Proof. Let $x \in Kerd$ and let $x \leq y$. Then d(x) = 1 and x * y = 1. By hypothesis and Proposition 2.2 (2), we get

$$\begin{aligned} d(y) &= d(1 * y) = d((x * y) * y) = d((y * x) * x) \\ &= ((y * x) * d(x)) \lor (d(y * x) * x) \\ &= ((y * x) * 1) \lor (d(y * x) * x) \\ &= 1 \lor (d(y * x) * x) = 1, \end{aligned}$$

and so $y \in Kerd$.

A map d on a CI-algebra X is said to be an *isotone* if $x \leq y$ implies $d(x) \leq d(y)$ for all $x, y \in X$ [8].

THEOREM 3.16. Let d be an isotone derivation on a transitive CIalgebra X and let $x \in Fix_d(X)$. If d is idempotent and regular on X, then Kerd is a filter of X.

Proof. Since d is regular, we get $1 \in Kerd$. Let $x \in Kerd$ and $x * y \in Kerd$. Then by Theorem 3.8, we get 1 = d(x * y) = x * d(y), which means $x \leq d(y)$. Since d is isotone and idempotent derivation on X, then $1 = d(x) \leq d^2(y) = d(y)$. That is, d(y) = 1. This implies $y \in Kerd$. Therefore Kerd is a filter of X. \Box

PROPOSITION 3.17. Let d be a regular derivation on a CI-algebra X. If d is one-to-one, then $Kerd = \{1\}$.

Proof. If $x \in Kerd$, then d(x) = 1. Since d is regular, d(1) = 1. Hence d(x) = d(1). Since d is one-to-one, we get x = 1. Therefore $Kerd = \{1\}$.

PROPOSITION 3.18. Let d be an isotone derivation on a CI-algebra X. If $x \leq y$ and $x \in Kerd$, then $y \in Kerd$ for all $x, y \in X$.

Proof. Let $x \leq y$ and $x \in Kerd$. Then d(x) = 1, and so $1 = d(x) \leq d(y)$. By Proposition 2.2 (3), we get d(y) = 1.

DEFINITION 3.19. [3] Let d be a derivation on a CI-algebra X. A nonempty subset F of X is said to be d-invariant if $d(F) \subseteq F$, where $d(F) = \{d(x) \mid x \in F\}$.

It follows from $d(Fix_d(X)) \subset Fix_d(X)$ that $Fix_d(X)$ is d-invariant.

PROPOSITION 3.20. Let d be a regular derivation on a CI-algebra X. Then every filter F of X is d-invariant.

Proof. Let F be a filter of X and let $y \in d(F)$. Then y = d(x) for some $x \in F$. It follows from Proposition 3.9 that $x * y = x * d(x) = 1 \in F$. This implies $y \in F$. Thus $d(F) \subseteq F$. Therefore F is d-invariant. \Box

DEFINITION 3.21. [7] A nonempty subset F of a CI-algebra X is said to be a *normal filter* of X if the following conditions are satisfied:

(NF1) $1 \in F$.

(NF2) $x \in X$ and $y \in F$ imply $x * y \in F$.

PROPOSITION 3.22. Let d be a (r, l)-derivation on a self-distributive CI-algebra X. Then:

(1) $Fix_d(X)$ is a normal filter of X.

(2) Kerd is a normal filter of X.

Proof. Since X is a self-distributive CI-algebra, then x * 1 = x * (x * x) = (x * x) * (x * x) = 1 for every $x \in X$. By Proposition 3.5 we know d(1) = 1. Hence $1 \in Fix_d(X)$ and so $1 \in Kerd$.

(1) Let $x \in X$ and $y \in Fix_d(X)$. Then by Theorem 3.8, we get d(x * y) = x * d(y) = x * y. Hence $x * y \in Fix_d(X)$ and so $Fix_d(X)$ is a normal filter of X.

(2) Similarly, let $x \in X$ and $y \in Kerd$. Then by Theorem 3.8, we get d(x * y) = x * d(y) = x * 1 = 1. Hence $x * y \in Kerd$. and so Kerd is a normal filter of X.

PROPOSITION 3.23. Let d be a regular derivation on a self-distributive CI-algebra X and let $a \in X$. Then $F_a = \{x \in X \mid a \leq d(x)\}$ is a normal filter of X.

Proof. Since $a \leq d(1) = 1$ for every $a \in X$, we get $1 \in F_a$. Let $x \in X$ and $y \in F_a$. Then a * d(y) = 1, and so by Theorem 3.8

$$\begin{aligned} a*d(x*y) &= a*(x*d(y)) = (a*x)*(a*d(y)) \\ &= (a*x)*1 \\ &= 1. \end{aligned}$$

Hence $x * y \in F_a$ and so F_a is a normal filter of X.

References

- Y. Imai and K. Iséki, On axiom systems of propositional calculi. XIV, Proceedings of the Japan Academy 42 (1966), 19-22.
- [2] K. Iséki, An algebra related with a propositional calculus, Proceedings of the Japan Academy 42 (1966), 26-29.
- [3] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Information Sciences 159 (2004), no. 3-4, 167-176.
- [4] H. S. Kim and Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae. e-2006, 1199-1202.
- [5] B. L. Meng, CI-algebras, Scientiae Mathematicae Japonicae. e-2009, 695-701.
- [6] B. L. Meng, Atoms in CI-algebras and singular CI-algebras, Scientiae Mathematicae Japonicae. e-2010, 319-324.
- [7] B. L. Meng, Closed filters in CI-algebras, Scientiae Mathematicae Japonicae. e-2010, 265-270.
- [8] G. Muhiuddin and Abdullah M. Al-roqi, On t-derivations of BCI-algebras, Abstract and Applied Analysis, vol 2012, 12.

*

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: yonghoon@dankook.ac.kr

**

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: msrhee@dankook.ac.kr