REPRESENTATIONS OF THE AUTOMORPHISM GROUP OF A SUPERSINGULAR K3 SURFACE OF ARTIN-INVARIANT 1 OVER ODD CHARACTERISTIC

Junmyeong Jang*

ABSTRACT. In this paper, we prove that the image of the representation of the automorphism group of a supersingular K3 surface of Artin-invariant 1 over odd characteristic p on the global two forms is a finite cyclic group of order p+1. Using this result, we deduce, for such a K3 surface, there exists an automorphism which cannot be lifted over a field of characteristic 0.

1. Introduction

Let k be an algebraically closed field and X be an algebraic K3 surface defined over k. $H^0(X,\Omega^2_{X/k})$ is a one dimensional k space and the canonical representation of the automorphism group of X on $H^0(X,\Omega^2_{X/k})$

$$\rho: \operatorname{Aut} X \to Gl(H^0(X, \Omega^2_{X/k}))$$

is a character. If the characteristic of k is not 2, the image of ρ is a finite cyclic group. ([14], [7]) We let N be the order of $\operatorname{Im} \rho$. If the characteristic of k is 0 or X is of finite height over odd characteristic, $\phi(N)$ is at most 20. ([13], [7]) Here ϕ is the Euler ϕ -function. If X is a supersingular K3 surface of Artin-invariant σ over odd characteristic, N divides $p^{\sigma}+1$. ([14], Prop. 2.4) For the definition of height and Artin-invariant, see section 2. In this paper, we prove that for a supersingular K3 surface of Artin-invariant 1 over odd characteristic, the order of $\operatorname{Im} \rho$ is p+1.

Theorem 3.3. Let X be a supersingular K3 surface of Artin invariant 1 over an algebraically closed field k of odd characteristic p. Then

Received March 03, 2014; Accepted April 23, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 14J20, 14J28, 11G25.

Key words and phrases: supersingular K3 surface, crystalline torelli theorem, automorphism group.

Supported by the 2011 Research Fund of University of Ulsan.

Im ρ is a cyclic group of order p+1.

Assume k is an algebraically closed field of odd characteristic and (R,m) is a discrete valuation ring of characteristic 0 whose residue field R/m is isomorphic to k. In this case $p \in m$. A proper connected smooth scheme \mathbb{X} over R is a lifting of X over R if the base change $\mathbb{X} \otimes k$ is isomorphic to X. Every K3 surface defined over k has a lifting over the ring of Witt vectors. ([3], [15]) Let $\alpha: X \to X$ be an automorphism of X. A lifting of (X,α) over R is a pair $(\mathbb{X},\mathfrak{a})$ such that \mathbb{X} is a lifting of X over R and \mathfrak{a} is an R-isomorphism of \mathbb{X} satisfying $\mathfrak{a} \otimes k$ is equal to α under the identification $\mathbb{X} \otimes k = X$. If α is of finite order and the order of α is prime to p, α has a lifting over W. ([8]) When X is a K3 surface of finite height, we let T_l be the l-adic transcendental lattice of X. In other words, $T_l(X)$ is the orthogonal complement of the embedding

$$NS(X) \otimes \mathbb{Z}_l \hookrightarrow H^2_{\acute{e}t}(X,\mathbb{Z}_l).$$

The representation

$$\chi_l: \operatorname{Aut} X \to O(T_l(X))$$

has a finite image. ([7], Prop. 2.5) If the order of $\chi_l(\alpha)$ is not divisible by p, (X,α) has a lifting over W. ([8]) Since the characteristic polynomial of $\chi_l(\alpha)$ has integer coefficients ([4], 3.7.3), if $p \geq 23$ the order of $\chi_l(\alpha)$ is not divisible by p for any $\alpha \in \operatorname{Aut} X$.

From Theorem 3.3, we obtain the following.

Corollary 3.5. If $\phi(p+1) > 20$, a supersingular K3 surface of Artininvariant 1 over k has an automorphism which does not have a lifting over a field of characteristic 0.

2. Preliminary: supersingular K3 surfaces

In this section we review some properties of supersingular K3 surfaces. Let k be an algebraically closed field of odd characteristic p. W = W(k) is the ring of Witt vectors of k and K is the fraction field of W. W and K are equipped with the natural Frobenius operators

$$\sigma: W \to W, \ \sigma: K \to K.$$

Let X be a K3 surface defined over k. The second crystalline cohomology of X/k, $H^2_{cris}(X/W)$ is a free W-module of rank 22 equipped with a Frobenius linear endomorphism

$$\mathbf{F}: H^2_{cris}(X/W) \to H^2_{cris}(X/W).$$

 $H^2_{cris}(X/K) = H^2_{cris}(X/W) \otimes K$ has the induced Frobenius-linear automorphism

$$\mathbf{F}: H^2_{cris}(X/K) \to H^2_{cris}(X/K).$$

By the Dieudonné-Manin theorem, an F-isocrystal $(H^2_{cris}(X/K), \mathbf{F})$ has a decomposition

$$(H^2_{cris}(X/K), \mathbf{F}) = \bigoplus K[T]/(T^{r_i} - p^{s_i}).$$

Here K[T] is a Frobenius semi-commutative polynomial ring satisfying $Ta = \sigma(a)T$ for any $a \in K$. Under the identification, the operator ${\bf F}$ corresponds to the multiplication by T on the right hand side. We say the rational number $\frac{s_i}{r_i}$ is a Newton slope of $H^2_{cris}(X/K)$. The length of Newton slope $\frac{s_i}{r_i}$ is r_i . The sum of the lengths of all the slopes is equal to the dimension of $H^2_{cris}(X/K)$. If the only slopes of $H^2_{cris}(X/K)$ is 1, we say the height of X is ∞ or X is supersingular. If X is not supersingular, there exists an integer h $(1 \le h \le 10)$ such that 1 - 1/h, 1, 1 + 1/h are slopes of $H^2_{cris}(X/K)$ of length h, 22 - 2h, h respectively. In this case, the height of X is h.

The Neron-Severi group of X, NS(X) is a finite free abelian group equipped with a lattice structure given by the intersection theory. The Picard number of X, $\rho(X)$ is the rank of NS(X). The Neron-Severi lattice of a K3 surface is even by the Riemann-Roch theorem and the signature of NS(X) is $(1, \rho(X) - 1)$ by the Hodge index theorem. The Picard number of X is at most the length of the Newton slope 1. ([5]) It follows that $\rho(X) \leq 22 - 2h$ if the height of X is $h < \infty$. Also it is known that X is supersingular if and only if $\rho(X) = 22$. ([2], [10]) Note that over a field of characteristic 0, the Picard number of a K3 surface is at most 20 since $h^{1,1} = 20$ for a K3 surface.

For a lattice L, we denote the discriminant of L and the discriminant group L^*/L by d(L) and A(L) respectively. Let $d(X) = d(NS(X)) \in \mathbb{Z}$ be the discriminant of the lattice NS(X) and $A(X) = (NS(X))^*/NS(X)$ be the discriminant group of NS(X). When X is a supersingular K3 surface over k, $d(X) = -p^{2\sigma}$ for an integer $1 \le \sigma \le 10$. We say σ is the Artin-invariant of X. It is known that the moduli space of K3 surfaces of height $h < \infty$ is 20 - h dimensional and the moduli space of supersingular K3 surfaces of Artin-invariant σ is $\sigma - 1$ dimensional. ([1]) Moreover a supersingular K3 surface of Artin-invariant 1 is unique up to isomorphism and it is isomorphic to the Kummer surface of the self-product of a supersingular elliptic curve. For a supersingular K3 surface X, the lattice structure of NS(X) is determined by the Artin-invariant and the base characteristic p. ([17]) Let us denote the Neron-Severi lattice of a

supersingular K3 surface of Artin-invariant σ over a field of characteristic p by $\Lambda_{p,\sigma}$. After tensor product with \mathbb{Z}_p , we obtain a decomposition of \mathbb{Z}_p -lattice

$$\Lambda_{p,\sigma}\otimes\mathbb{Z}_p=E_0(p)\oplus E_1.$$

Here E_0 and E_1 are unimodular \mathbb{Z}_p -lattices of rank 2σ and $22 - 2\sigma$ respectively. And $d(E_0) = (-1)^{\sigma} \delta$ and $d(E_1) = (-1)^{\sigma+1} \delta$, where δ is a non-square unit of \mathbb{Z}_p . Note that a unimodular \mathbb{Z}_p -lattice is uniquely determined up to isomorphism by the rank and the discriminant, square or non-square. It follows that

$$A(\Lambda_{p,\sigma}) = A(\Lambda_{p,\sigma} \otimes \mathbb{Z}_p) = A(E_0(p)) = E_0(p)/pE_0(p)$$

is a 2σ -dimensional quadratic \mathbb{Z}/p space. Note that the discriminant of $A(\Lambda_{p,\sigma})$ is a $(-1)^{\sigma}$ times non-square and $A(\Lambda_{p,\sigma})$ does not contain a σ -dimensional isotropic \mathbb{Z}/p -subspace.

By the flat Kummer sequence

$$0 \to \mu_{p^n} \to \mathbb{G}_{m,X} \stackrel{p^n}{\to} \mathbb{G}_{m,X} \to 0,$$

we have a canonical inclusion

$$NS(X) \otimes \mathbb{Z}_p \hookrightarrow H^2_{fl}(X, \mathbb{Z}_p(1)).$$

Also there exists an exact sequence ([5])

$$0 \to H^2_{fl}(X, \mathbb{Z}_p(1)) \to H^2_{cris}(X/W) \stackrel{id-p}{\to} H^2_{cris}(X/W).$$

Composing two embeddings, we obtain the cycle map

$$NS(X) \otimes W \hookrightarrow H^2_{cris}(X/W).$$

If X is a supersingular K3 surface, the cycle map is an embedding of W-lattices of the same rank. Since $H^2_{cris}(X/W)$ is unimodular by the Poincaré duality,

$$NS(X) \otimes W \subset H^2_{cris}(X/W) \subset (NS(X) \otimes W)^*$$

and $K_X = H_{cris}^2(X/W)/(NS(X) \otimes W)$ is a σ -dimensional isotropic k-subspace of the discriminant group

$$A(NS(X) \otimes W) = (NS(X) \otimes W)^*/(NS(X) \otimes W) = A(NS(X)) \otimes k.$$

 K_X is equipped with a Frobenius-inverse linear operator $V: K_X \to K_X$ such that $V^{\sigma} = 0$ and we can choose $x \in K_X$ such that $\{x, Vx, \dots, V^{\sigma-1}x\}$ is a basis of K_X . ([14]) Also we have a canonical isomorphism ([6], Prop.2.2)

$$K_X/VK_X \simeq H^2(X, \mathcal{O}_X).$$

Let $\mathcal{P} = \{x \in NS(X) \otimes \mathbb{R} | (x,x) > 0\}$, the positive cone of X and $\Delta = \{v \in NS(X) | (v,v) = -2\}$, the set of roots of X. For any $v \in \Delta$, let s_v be the reflection with respect to v,

$$s_v: u \mapsto u + (u, v)v.$$

Let W_X be the subgroup of the orthogonal group of NS(X) generated by all the refections $s_v, (v \in \Delta)$ and -id. Let $\mathcal{P}^0 = \{v \in \mathcal{P} | (v, w) \neq 0, \forall w \in \Delta\}$. It is known that the W_X acts simply transitively on the set of connected components of \mathcal{P}^0 . Moreover, the connected component which contains an ample divisor is the ample cone of X. ([16], [11]) It follows that $v \in NS(X)$ represents an ample divisor if and only if (v,v) > 0 and (v,w) > 0 for all effective $w \in \Delta$. If (v,v) > 0 and $(v,w) \neq 0$ for any $w \in \Delta$, there exists a unique element γ in W_X such that $\gamma(v)$ represents an ample divisor.

THEOREM 2.1 (Crystalline Torelli theorem, [16], p.371). Let X and Y be supersingular K3 surfaces defined over k. Assume $\Psi: NS(X) \to NS(Y)$ is an isometry. If Ψ takes the ample cone of $NS(X) \otimes \mathbb{R}$ into the ample cone of $NS(Y) \otimes \mathbb{R}$ and K_X into K_Y , then there exists a unique isomorphism $\psi: Y \to X$ such that $\Psi = \psi^*$

Remark 2.2. Our definition of K_X is slightly different from the definition of the period space in [16]. However, in the statement of the crystalline Torelli theorem, we can use K_X instead of the period space.

For a supersingular K3 surface X, let

$$\rho^{-1}: \operatorname{Aut} X \to Gl(H^2(X, \mathcal{O}_X))$$

and

$$\chi: \operatorname{Aut} X \to Gl(A(NS(X)))$$

be the representation of the automorphism group of X on $H^2(X, \mathcal{O}_X)$ and A(NS(X)) respectively. Since ρ^{-1} is a character, ρ^{-1} is isomorphic to the representation

$$\rho: \operatorname{Aut} X \to Gl(H^0(X, \Omega^2_{X/k})).$$

Any automorphism of X preserves K_X in $A(NS(X)) \otimes k$, so there is a canonical projection

$$pr: \operatorname{Im} \chi \to \operatorname{Im} \rho^{-1} \simeq \operatorname{Im} \rho$$

PROPOSITION 2.3 ([7], Prop.2.1). pr is an isomorphism. In particular, both of Im χ and Im ρ are finite cyclic groups.

For the order of $\operatorname{Im} \rho$, the following is known.

PROPOSITION 2.4 ([14], Prop.2.4). If the Artin-invariant of X is σ , the order of Im ρ divides $p^{\sigma} + 1$.

3. Proof

Assume k is an algebraically closed field of odd characteristic p and X is a supersingular K3 surface of Artin-invariant 1. Then A(X) is a 2 dimensional space over \mathbb{F}_p equipped with a non degenerate quadratic form $q = q_{A(X)}$. Here \mathbb{F}_p is a prime field of characteristic p. Also we can see A(X) does not contain a non-zero isotropic vector over \mathbb{F}_p . Let us choose an orthogonal basis of A(X), $\{x,y\}$ such that $x \cdot x = 1$, $y \cdot y = -\delta$ and $x \cdot y = 0$. The following lemma is well-known. We present a proof using the zeta function.

LEMMA 3.1. For any $\alpha \in \mathbb{F}_p^*$, the cardinality of the set $\{v = ax + by \in A(X) | a, b \in \mathbb{F}_p, q(v) = \alpha\}$ is p + 1.

Proof. Let C be the smooth conic $X^2 - \delta Y^2 - \alpha Z^2$ in \mathbb{P}^2_k . Let $Z_C(t)$ be the zeta function of C. Since $Z_C(t) = \frac{1}{(1-t)(1-pt)}$, $|C(\mathbb{F}_p)| = p+1$. For any $(X,Y) \neq (0,0)$, $X^2 - \delta Y^2 \neq 0$, so each point of $C(\mathbb{F}_p)$ gives a distinct solution $(X/Z)^2 - \delta (Y/Z)^2 = \alpha$. This completes the proof. \square

Lemma 3.2. The special orthogonal group SO(q) is a finite cyclic group of order p+1

Proof. Assume $\gamma \in O(q)$. We have p+1 choices of $\gamma(x)$ by Lemma 3.1. Because $\gamma(x) \cdot \gamma(y) = 0$ and $\gamma(y) \cdot \gamma(y) = -\delta$, for each choice of $\gamma(x)$, there are two possibilities of $\gamma(y)$. Therefore the order of O(q) is 2(p+1) and the order of SO(q) is p+1. There are two isotropic lines in $A(X) \otimes \mathbb{F}_{p^2}$. Any $\gamma \in O(q)$ fixes or interchanges two isotropic lines and $\gamma \in O(q)$ is contained in SO(q) if and only if γ fixes the isotropic lines. Let $v \in A(X) \otimes \mathbb{F}_{p^2}$ be an isotropic vector. The character $\lambda : SO(q) \to k^*$ defined by $\gamma(v) = \lambda(\gamma)v$ is an injection. It follows that $SO(q) = \mathbb{Z}/(p+1)$.

Theorem 3.3. Let X be a supersingular K3 surface of Artin-invariant 1 over an algebraically closed field k of odd characteristic p. Then Im ρ is a cyclic group of order p+1.

Proof. Since NS(X) is even indefinite of rank 22 and $A(NS(X)) = (\mathbb{Z}/p)^2$, the canonical map

$$\pi: O(NS(X)) \to O(q)$$

is surjective. ([12], 1.14.2) Assume $\gamma \in \pi^{-1}(SO(q))$. Since K_X is an isotropic line of $A(X) \otimes k$, γ preserves K_X . By [18], p.456 there is a decomposition

$$NS(X) = U \oplus H^{(p)} \oplus E_8^2$$

Here U is an even unimodular hyperbolic lattice of rank 2 and E_8 is a negative definite unimodular root lattice. $H^{(p)}$ is the maximal order of the quaternion algebra over \mathbb{Q} which is ramified only at p and ∞ . The lattice structure of $H^{(p)}$ is induced by the trace map of the quaternion algebra. $H^{(p)}$ is an negative definite even lattice of rank 4 and

$$A(H^{(p)}) = A(NS(X)) = (\mathbb{Z}/p)^2.$$

The Weyl group $W_X \subset O(NS(X))$ is generated by -id and reflections $s_v(v \in \Delta)$. For $v \in \Delta$, $v \cdot v = -2$, so $\mathbb{Z}_p v$ is a unimodular sublattice of $NS(X) \otimes \mathbb{Z}_p$ and we have a decomposition

$$NS(X) \otimes \mathbb{Z}_p = M \oplus \mathbb{Z}_p v,$$

here M is the orthogonal complement of $\mathbb{Z}_p v$ in $NS(X) \otimes \mathbb{Z}_p$. Then $s_v|NS(X) \otimes \mathbb{Z}_p = id \oplus -id$ with respect to the decomposition. Since A(M) = A(X), $s_v|A(X) = id$ and $s_v|K_X = id$. The positive cone \mathcal{P} has two connected components. Since s_v fixes a positive vector, s_v fixes connected components of \mathcal{P} . On the other hand, -id interchanges the connected components of \mathcal{P} . Let $\iota = id \oplus -id \oplus id \in O(NS(X))$ for the decomposition

$$NS(X) = U \oplus H^{(p)} \oplus E_8^2.$$

 ι preserves the connected components of \mathcal{P} and $\iota|A(NS(X)) = -id$. Assume $\psi \in O(NS(X))$ and $\pi(\psi) \in SO(q)$. There exists a unique $\gamma \in W_X \cup W_X \cdot \iota$ such that $\gamma \circ \psi$ preserves the ample cone and $\pi(\gamma \circ \psi) = \pi(\psi)$. Since $\gamma \circ \psi$ preserves the ample cone and K_X , $\gamma \circ \psi \in \operatorname{Aut} X \subset O(NS(X))$ by the crystalline Torelli theorem. Therefore

$$\operatorname{Im} \chi = \pi(\operatorname{Aut} X) = \pi(\pi^{-1}(SO(q))) = SO(q)$$

and $\operatorname{Im} \rho \simeq \operatorname{Im} \chi$ is a cyclic group of order p+1.

REMARK 3.4. For $\sigma > 1$, there exists a supersingular K3 surface of Artin-invariant σ over k such that the order of Im χ is equal to or less than 2. ([9], Theorem 1.7)

COROLLARY 3.5. If $\phi(p+1) > 20$, a supersingular K3 surface of Artin-invariant 1 over k has an automorphism which can not be lifted over a field of characteristic 0.

Proof. Let α be an automorphism of X such that the order of $\rho(\alpha)$ is p+1. Assume R is a discrete valuation ring of characteristic 0 whose residue field is isomorphic to k and $(\mathbb{X},\mathfrak{a})$ is a lifting of (X,α) over R. Let F be the fraction field of R and $X_F = \mathbb{X} \otimes F$. X_F is a K3 surface defined over F and $H^0(\mathbb{X},\Omega^2_{\mathbb{X}/R})$ is a free R-module of rank 1. The order of $\mathfrak{a}^*|H^0(\mathbb{X},\Omega^2_{\mathbb{X}/R})$ is equal to the order of $\mathfrak{a}^*|H^0(X_F,\Omega^2_{X_F/F})$. Since $\mathfrak{a}^*|H^0(\mathbb{X},\Omega^2_{\mathbb{X}/R})$ is a multiplication by a root of unity, the order of $\mathfrak{a}^*|H^0(\mathbb{X},\Omega^2_{\mathbb{X}/R})$ is a p-power times of the order of $\alpha^*|H^0(X,\Omega^2_{X/R})$. But the ϕ value of the order of $\mathfrak{a}^*|H^0(X_F,\Omega^2_{X_F/F})$ is at most 20 and it is a contradiction. Therefore (X,α) is not liftable.

References

- Artin, M. Supersingular K3 surfaces, Ann. Sci. École Norm. Sup(4) 7 (1974), 543-567.
- [2] Francois, C. The Tate conjecture for K3 surfaces over finite fields, Invent. Math. 194 (2013), 119-145.
- [3] Deligne, P. Relèvement des surfaces K3 en caractéristique nulle. Prepared for publication by Luc Illusie, Lecture notes in Math. 868 (1972), 58-79.
- [4] Illusie, L. Report on crystalline cohomology, Algebraic Geometry, Proc. Sympos. Pure Math. 29 (1975), 459-478.
- [5] Illusie, L. Complexe de de Rham-Witt et cohomologie cristalline, Ann. ENS 4serie 12 (1979), 501-661.
- [6] Jang, J. An Enriques involution of a supersingular K3 surface over odd characteristic, to appear at I. M. R. N.
- [7] Jang, J. The representation of the automorphism groups on the transcendental cycles and the Frobenius invariants of K3 surfaces, arxiv:1312.7634.
- [8] Jang, J. Lifting of an automorphism of a K3 surface, in progress.
- [9] Kondo, S. and Shimada, I. On certain duality of Neron-Severi lattices of supersingular K3 surfaces, arXiv:1212.0269.
- [10] Madapusi Pera, K. The Tate conjecture for K3 surfaces in odd characterisitc, arXiv:1301.6326.
- [11] Namikawa, Y. Periods of Enriques surfaces, Math. Ann. 270 (1985), 201-222.
- [12] Nikulin, V. V. Integral symmetric bilinear forms and some of their applications, Izv. Akad. Nauk SSSR 43 (1979), 111-177.
- [13] Nikulin, V. V. Finite gropus of automorphisms of Kählerian K3 surfaces, Trudy Moskov. Mat. Obshch 38 (1979), 75-137.
- [14] Nygaard, N. O. Higher De Rham-Witt complexes of supersingular K3 surfaces, Compositio Math. 42 (1981), 245-271.
- [15] Ogus, A. Supersingular K3 crystal, Astérisque 64 (1979), 3-86.
- [16] Ogus, A. A crystalline Torelli theorem for supersingular K3 surfaces, Prog. Math. 36 (1983), 361-394.

- [17] Rudakov, A. N. and Shafarevich, I. R. Surfaces of type K3 over fields of finite characteristic, Current problems in mathematics, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii 18 (1981), 115-207.
- [18] Shimada, I. Supersingular K3 surfaces in odd characteristic and sextic double planes, Math. Ann. 328 (2004), 451-468.

*

Department of Mathematics University of Ulsan Ulsan 680-749, Republic of Korea E-mail: jmjang@ulsan.ac.kr