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FREQUENTLY CONVERGENT SOLUTIONS OF
A DIFFERENCE EQUATION

Hui Li*, Fanqiang Bu**, and Yuanhong Tao***

Abstract. In this paper, using the definition and properties of
frequency measurement, we describe the properties of solutions of a
difference equation as the initial value belongs to different intervals
of the whole domain. We get the main result that if the initial value

belongs to [−1, 1] which is different from −1±√5
2

, then the solution
defined by initial value have two frequent limits 0 and 1 of the same
degree 0.5.

1. Introduction

Frequent limit is established using the definition of frequency mea-
surement in the early 90s ([1]-[2]), since the classical concept of limit
does not capture the fine details of sequences that do not converge. Fre-
quency measurement is a basic tool not only for discussing sequences
but also for describing properties of solutions of difference equations.

There have been many results using frequent measurement, such as
frequent oscillatory, frequent convergence and frequent stability of differ-
ence equations([3]-[15]). Frequency measurement is a basic tool not only
for studying sequences, but also for describing properties of solutions of
difference equations.

According to the existing literature in the 1930s, frequent measure-
ment was formally known as asymptotic density, natural density and
density, etc. In the beginning of the 20th century, it had been applied
to study problems of random distribution models ([1]-[2]).
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To any set A and B, denote A ∪ B, A ∩ B, A \ B the union, the
intersection and the difference of A and B respectively. Besides, φ means
void set. If Z is the set of integers, and k, l ∈ Z, denoting Z[k,∞) =
{i ∈ Z|i ≥ k}, Z[k, l] = {i ∈ Z|k ≤ i ≤ l}, Z(−∞, l] = {i ∈ Z|i ≤ l}. If
Ω ⊆ Z, then |Ω| means the number of elements of set Ω. Denoting
Ω(n) = Ω ∩ Z(−∞, n].

Let v = {vn} be a sequence, then the set {n ∈ Z[k,∞)|vn > c} will
be denoted by (v > c). The notations (v ≥ c), (v < c) and (v ≤ c) will
be defined similarly.

Definition 1.1. ([1]-[2]) Let Ω be a subset of Z+or (Z[−k,∞)), if
lim supn→∞

|Ωn|
n exists, then we call it upper frequency measurement of

the set Ω, denoting by µ∗(Ω); if limn→∞ inf |Ω
n|

n exists, then we call
it lower frequency measurement of Ω, denoting by µ∗(Ω). Specially, if
µ∗(Ω) = µ∗(Ω), then we call it the frequency measurement of the set Ω,
denoting by µ(Ω), we also say that Ω is measurable. If Ω can not be
measured, we say that Ω is unmeasurable.

The following are some properties of frequency measurement:

Proposition 1.2. ([1]-[2]) If Ω ⊆ Z+, µ∗(Ω) and µ∗(Ω) both exist,
then

0 ≤ µ∗(Ω) ≤ µ∗(Ω) ≤ 1.

If Ω is a finite set, then µ(Ω) = 0, µ(Z+) = 1. Especially µ(φ) = 0.

Proposition 1.3. ([1]-[2]) If Ω and Γ are the subsets of Z+, Ω ⊆ Γ,
then µ∗(Ω) ≤ µ∗(Γ) and µ∗(Ω) ≤ µ∗(Γ).

Proposition 1.4. ([1]-[2]) If Ω and Γ are two subsets of Z+, then
we have

µ∗(Ω) + µ∗(Γ)− µ∗(Ω ∩ Γ) ≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ)− µ∗(Ω ∩ Γ)

µ∗(Ω) + µ∗(Γ)− µ∗(Ω ∩ Γ) ≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ)− µ∗(Ω ∩ Γ)

Besides, if Ω and Γ are mutually disjoint, then

µ∗(Ω) + µ∗(Γ)

≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ) ≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ).

Proposition 1.5. ([1]-[2]) For any set Ω ⊆ Z+, we have

µ∗(Ω) + µ∗(Z+ \ Ω) = 1.
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Proposition 1.6. ([1]-[2]) If Ω and Γ are two subsets of Z+, and
Ω ⊆ Γ, then we have

µ∗(Γ)− µ∗(Ω) ≤ µ∗(Γ \ Ω) ≤ µ∗(Γ)− µ∗(Ω),

µ∗(Γ)− µ∗(Ω) ≤ µ∗(Γ \ Ω) ≤ µ∗(Γ)− µ∗(Ω).

Proposition 1.7. ([1]-[2]) If Ω and Γ are two subsets of Z+, and
µ∗(Ω) + µ∗(Γ) ≥ 1, then the set Ω ∩ Γ must be an infinite set.

2. Definitions and properties about frequent convergence

Definition 2.1. ([1]) Let X = {xn}∞n=k be a real sequence and I ⊆
R. If there exists a constant ω ∈ [0, 1] such that µ∗(X /∈ I) ≤ ω (or
equivalently, µ∗(X ∈ I) ≥ 1− ω), then X is said to be frequently inside
I of upper degree ω. If µ∗(X /∈ I) ≤ ω (or equivalently, µ∗(X ∈ I) ≥
1− ω), then X is said to be frequently inside I of lower degree ω.

In particular, if µ∗(X /∈ I) = 0, then X is said to be frequently inside
I.

Definition 2.2. ([1]-[2]) Let X = {xn}∞n=k be a real sequence and c
a constant. If for any given number ε > 0, there is a constant ω ∈ [0, 1)
such that µ∗(|X−c| ≥ ε) ≤ ω (or (µ∗(|X−c| ≥ ε) ≤ ω)), then c is called
a frequent limit of upper (respectively lower) degree ω of the sequence
X, and X is said to be frequently convergent to c of upper (respectively
lower) degree ω.

If there exists a constant ε0 such that µ{|X − c| ≥ ε} = ω for any
number ε ∈ (0, ε0) then the sequence X is said to be frequently conver-
gent to c of degree ω and c is said to be a frequent limit of degree ω of
X. In particular, if ω = 0, we say that X frequently converges to c, and
c is the frequent limit of X.

The following are properties of frequent limit, where X = {xn}, Y =
{yn}, Z = {zn} are all real sequences.

Proposition 2.3. ([1]-[2]) If f limn→∞ xn = f limn→∞ yn = a and
µ(X ≤ Z≤ Y ) = 1, then f limn→∞ zn = a.

Proposition 2.4. ([1]-[2]) If f limn→∞ xn = a and f limn→∞ yn = b,
then f limn→∞(xn ± yn) = a± b and f limn→∞(xnyn) = ab.

Proposition 2.5. ([1]-[2]) If f limn→∞ xn = a and f limn→∞ yn =
b 6= 0, then f limn→∞(xn/yn) = a/b.

Proposition 2.6. ([1]-[2]) If f limn→∞ xn = a and function g(t) is
continuous near point a, then f limn→∞ g(xn) = g(a).
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3. Main result and its proof

In this section, we discuss the frequent convergence of solutions of
the following difference equation:

(3.1) xn+1 = 1− x2
n

Given the initial-value x0, we can use equation (3.1) to deduce sequence
X = {xn}∞n=0, then we call it the solution of the difference equation
(3.1).

Obviously, if the initial-value x0 = −1±√5
2 , then we can deduce that

xn = 1±√5
2 , n = 0, 1, 2 · · · , which means the solution of the difference

equation (3.1) is constant-valued. If the initial-value x0 doesn’t equal to
−1±√5

2 , we have the following conclusion.

Theorem 3.1. Let x0 be the initial-value of the difference equation
(3.1), X = {xn}∞n=0 be its solution , then we have the following results.

1) If x0 ∈ (−∞, −1−√5
2 )∪ (1+

√
5

2 , +∞), then X = {xn}∞n=0 frequently

inside (−∞, −1−√5
2 );

2) If x0 ∈ (−1−√5
2 ,−1) ∪ [1, 1+

√
5

2 ), then X = {xn}∞n=0 frequently

inside (−1−√5
2 , 1);

3) If x0 ∈ (−1, 1−√5
2 )∪ (1−√5

2 , 0)∪ [0, −1+
√

5
2 )∪ (−1+

√
5

2 , 1], then X =
{xn}∞n=0 has two frequent limits 0 and 1 of the same degree 0.5.

Proof. Let H(t) = 1− (1− t2)2 and G(t) = H(t)− t = 2t2− t4− t. If
G(t) = 0, then we can get four roots: t1 = −1−√5

2 , t2 = 0, t3 = −1+
√

5
2 ,

t4 = 1.
By elementary analysis, it is easy to see that G(t) ≤ 0 for t ∈

(−∞, −1−√5
2 ) ∪ [0, −1+

√
5

2 ) ∪ [1,+∞) and G(t) ≥ 0 for t ∈ (−1−√5
2 , 0) ∪

(−1+
√

5
2 , 1], that is,

(3.2)

{t≥1−(1−t2)2, t∈(−∞,−1−√5
2

)∪[0,−1+
√

5
2

)∪[1,+∞)

t≤1−(1−t2)2, t∈(−1−√5
2

,0)∪(−1+
√

5
2

,1]

According to the initial-value in different intervals, we divide the
problem into five cases :

I : x0 ∈ (−∞,
−1−√5

2
); II : x0 ∈ (

−1−√5
2

, 0)

III : x0 ∈ [0,
−1 +

√
5

2
); IV : x0 ∈ (

−1 +
√

5
2

, 1]; V : x0 ∈ (1, +∞].
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We then discuss each case in details:
Case I : x0 ∈ (−∞, −1−√5

2 ).

Since x2
0 > 3+

√
5

2 , we have x1 = 1− x2
0 < −1−√5

2 and x2
1 > 3+

√
5

2 , then
x2 = 1− x2

1 < −1−√5
2 , thus we can easily deduce that

{xn}∞n=0 ⊂ (−∞,
−1−√5

2
).

Thus in view of the inequality t ≥ 1− t2 on t ∈ (−∞, −1−√5
2 ), we have

−1−√5
2

> x0 > x1 > x2 > · · · > xn > · · ·,

that is, {xn}∞n=0 is a decreasing sequence which belongs to (−∞, −1−√5
2 ).

It also means µ(X /∈ (−∞, −1−√5
2 )) = 0, hence {xn} is frequently inside

(−∞, −1−√5
2 ).

Case II : x0 ∈ (−1−√5
2 , 0).

In this case, we will divide the interval (−1−√5
2 , 0) into three subin-

tervals:
(I) x0 ∈ (−1−√5

2 ,−1).

Since 1 < x2
0 < 3+

√
5

2 , we have −1−√5
2 < x1 = 1− x2

0 < 0 and
0 < x2

1 < 3+
√

5
2 , then from −1−√5

2 < x2 = 1− x2
1 < 1 and 0 < x2

2 <
3+
√

5
2 we have −1−√5

2 < x3 = 1− x2
2 < 1, thus we can deduce that

{xn}∞n=2 ⊂ (−1−√5
2 , 1) except for x0 ∈ (−1−√5

2 ,−1) and x1 ∈ (−1−√5
2 , 0),

that is to say, µ(X /∈ (−1−√5
2 , 1)) = 0, hence X is frequently inside

(−1−√5
2 , 1).

(II) x0 ∈ (−1, 1−√5
2 ).

Since 3−√5
2 < x2

0 < 1, we have 0 < x1 = 1− x2
0 < −1+

√
5

2 and
0 < x2

1 < 3−√5
2 , then from −1+

√
5

2 < x2 = 1− x2
1 < 1 and 3−√5

2 < x2
2 < 1

we have 0 < x3 = 1− x2
2 < −1+

√
5

2 and 0 < x2
3 < 3−√5

2 , then −1+
√

5
2 <

x4 = 1− x2
3 < 1. Thus we can deduce that {x2n+1}∞n=0 ⊂ (0, −1+

√
5

2 )
and {x2n}∞n=1 ⊂ (−1+

√
5

2 , 1).
From (3.1), we obtain that

(3.3) xn+2 = 1− x2
n+1 = 1− (1− x2

n)2, n = 0, 1, 2, . . . .

In view of the inequality (3.2), we have
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−1 +
√

5
2

> x1 ≥ 1− (1− x2
1)

2

= x3 ≥ . . . ≥ x2n+1 ≥ 1− (1− x2
2n+1)

2 = x2n+3 ≥ . . . ≥ 0

−1 +
√

5
2

< x2 ≤ 1− (1− x2
2)

2

= x4 ≤ . . . ≤ x2n−2 ≤ 1− (1− x2
2n)2 = x2n+2 ≤ . . . ≤ 1

If we denote yn = x2n+1 for n = 0, 1, 2, . . . , then limn→∞ yn = y∗ ∈
[0, −1+

√
5

2 ). We next assert that y∗ = 0. Note that we can write (3.3) in
the following form

yn = H(yn−1), n = 1, 2, . . .

where H(u) = 1−(1− u2)2. Note that the polynomial G(t) = H(t)−t =
1 − t − (1− t2)2 has only one root 0 in [0, −1+

√
5

2 ), and from (3.3) we
have y∗ = 1− (1− y2∗)

2 , i.e., G(y∗) = 0, hence y∗ = 0.

Since G(t) also has only one root in (−1+
√

5
2 , 1], by similar arguments,

we may show that limn→∞ x2n−1 = 1, thus the solution X of the differ-
ence equation (3.1) have two frequent limits 0 and 1 of the same degree
0.5.

(III) x0 ∈ (1−√5
2 , 0).

Since 0 < x2
0 < 3−√5

2 , we have −1+
√

5
2 < x1 = 1− x2

0 < 1 and
3−√5

2 < x2
1 < 1, then from 0 < x2 = 1− x2

1 < −1+
√

5
2 and 0 < x2

2 < 3−√5
2

we have −1+
√

5
2 < x3 = 1− x2

2 < 1 and 3−√5
2 < x2

3 < 1, then 0 < x4 =
1− x2

3 < −1+
√

5
2 , thus we can deduce that {x2n+1}∞n=0 ⊂ (−1+

√
5

2 , 1) and
{x2n}∞n=1 ⊂ (0, −1+

√
5

2 ). By (3.2), we get that

−1 +
√

5
2

< x1 < x3 < x5 < · · · < x2n+1 < · · · < 1, (n = 0, 1, 2 · · · )

−1 +
√

5
2

> x2 > x4 > x6 > · · · > x2n > · · · > 0, (n = 1, 2 · · · )
By similar argument with (II), we can conclude that the solution of

different equation (3.1) have two frequent limits 0 and 1 of the same
degree 0.5.

Case III : x0 ∈ [0, −1+
√

5
2 ).

Since 0 ≤ x2
0 < 3−√5

2 , we have −1+
√

5
2 < x1 = 1− x2

0 ≤ 1, then
from 3−√5

2 < x2
1 ≤ 1 we have 0 ≤ x2 = 1− x2

1 < −1+
√

5
2 ; and from
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0 ≤ x2
2 < 3−√5

2 we have −1+
√

5
2 < x3 = 1− x2

2 ≤ 1; also from 3−√5
2 <

x2
3 ≤ 1 we have 0 ≤ x4 = 1− x2

3 < −1+
√

5
2 , thus we can deduce that

{x2n+1}∞n=0 ⊂ (−1+
√

5
2 , 1] and {x2n}∞n=0 ⊂ [0, −1+

√
5

2 ), hence by the simi-
lar argument with the above, we can get the conclusion that the solution
of the difference equation (3.1) have two frequent limits 0 and 1 of the
same degree 0.5.

Case IV : x0 ∈ (−1+
√

5
2 , 1].

Since 3−√5
2 < x2

0 ≤ 1, we have 0 ≤ x1 = 1− x2
0 < −1+

√
5

2 and 0 ≤
x2

1 < 3−√5
2 , then from −1+

√
5

2 < x2 = 1− x2
1 ≤ 1 and 3−√5

2 < x2
2 ≤ 1

we have 0 ≤ x3 = 1− x2
2 < −1+

√
5

2 and 0 ≤ x2
3 < 3−√5

2 , then −1+
√

5
2 <

x4 = 1− x2
3 ≤ 1, thus we can deduce that {x2n+1}∞n=0 ⊂ [0, −1+

√
5

2 )
and {x2n}∞n=0 ⊂ (−1+

√
5

2 , 1], so we can get the same conclusion with to
case III.

Case V : x0 ∈ [1, +∞).
We divide the interval [1, +∞) into two subintervals:
(I) x0 ∈ (1+

√
5

2 , +∞).

Since 3+
√

5
2 < x2

0 < +∞, we have −∞ < x1 = 1− x2
0 < −1−√5

2

and 3+
√

5
2 < x2

1 < +∞, then from −∞ < x2 = 1− x2
1 < −1−√5

2 and
3+
√

5
2 < x2

2 < +∞, we have −∞ < x3 = 1− x2
2 < −1−√5

2 , thus we
can deduce that {xn}∞n=1 ⊂ (−∞, −1−√5

2 ). In view of the inequality
t > 1− t2 on t ∈ (−∞, −1−√5

2 ), we have

−1−√5
2

> x1 > x2 > x3 > · · · > xn > · · ·, (n = 1, 2 · · · )
thus the solution X of the difference equation (3.1) is frequently inside
(−∞, −1−√5

2 ).

(II) x0 ∈ [1, 1+
√

5
2 ).

Since 1 < x2
0 < 3+

√
5

2 , we have −1−√5
2 < x1 = 1− x2

0 < 0 and
0 < x2

1 < 3+
√

5
2 , then −1−√5

2 < x2 = 1− x2
1 < 1, i.e., x2 ∈ (−1−√5

2 , 1).
Similar with the discuss of first situation (I) of caseII, we can conclude
that the solution X of the difference equation (3.1) is frequently inside
(−1−√5

2 , 1).

All in all, if x0 ∈ (−∞, −1−√5
2 ) ∪ (1+

√
5

2 ,+∞), then the solution
{xn}∞n=0 is frequently inside (−∞, −1−√5

2 ); if x0 ∈ (−1−√5
2 ,−1)∪[1, 1+

√
5

2 ),
then the solution {xn}∞n=0 is frequently inside (−1−√5

2 , 1); if x0 ∈ (−1, 1−√5
2 )∪
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(1−√5
2 , 0) ∪ [0, −1+

√
5

2 ) ∪ (−1+
√

5
2 , 1], then the solution {xn}∞n=0 have two

frequent limits 0 and 1 of the same degree 0.5.
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