References
- Afolayan, A. J. 2003. Extracts from the shoots of Arctotis arctotoides inhibit the growth of bacteria and fungi. Pharm. Biol. 41:22-25. https://doi.org/10.1076/phbi.41.1.22.14692
- Ahn, B. R., Moon, H. E., Kim, H. R., Jung, H. A. & Choi, J. S. 2012. Neuroprotective effect of edible brown alga Eisenia bicyclis on amyloid beta peptide-induced toxicity in PC12 cells. Arch. Pharm. Res. 35:1989-1998. https://doi.org/10.1007/s12272-012-1116-5
- Choi, J. -G., Kang, O. -H., Brice, O. -O., Lee, Y. -S., Chae, H. -S., Oh, Y. -C., Sohn, D. -H., Park, H., Choi, H. -G., Kim, S. -G., Shin, D. -W. & Kwon, D. -Y. 2010. Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Foodborne Pathog. Dis. 7:435-441. https://doi.org/10.1089/fpd.2009.0434
- Choi, J. -S., Bae, H. -J., Kim, S. -J. & Choi, I. S. 2011. In vitro antibacterial and anti-inflammatory properties of seaweed extracts against acne inducing bacteria, Propionibacterium acnes. J. Environ. Biol. 32:313-318.
- Clinical and Laboratory Standards Institute (CLSI). 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard, 8th ed. CLSI document M07-A8. CLSI, Wayne, PA, 68 pp.
- Clinical and Laboratory Standards Institute (CLSI). 2009. Performance standards for antimicrobial susceptibility testing: 18th informational supplement. CLSI document M100-S19. CLSI, Wayne, PA, 206 pp.
- Davies, J. & Davies, D. 2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74:417-433. https://doi.org/10.1128/MMBR.00016-10
- Eom, S. -H., Kim, D. -H., Lee, S. -H., Yoon, N. -Y., Kim, J. H., Kim, T. H., Chung, Y. -H., Kim, S. -B., Kim, Y. -M., Kim, H. -W., Lee, M. -S. & Kim, Y. -M. 2013. In vitro antibacterial activity and synergistic antibiotic effects of phlorotannins isolated from Eisenia bicyclis against methicillin‐resistant Staphylococcus aureus. Phytother. Res. 27:1260-1264. https://doi.org/10.1002/ptr.4851
- Eom, S. -H., Park, J. -H., Yu, D. -U., Choi, J. -I., Choi, J. -D., Lee, M. -S. & Kim, Y. -M. 2011. Antimicrobial activity of brown alga Eisenia bicyclis against methicillin-resistant Staphylococcus aureus. Fish. Aquat. Sci. 14:251-256.
- Ermakova, S., Men'shova, R., Vishchuk, O., Kim, S. -M., Um, B. -H., Isakov, V. & Zvyagintseva, T. 2013. Water-soluble polysaccharides from the brown alga Eisenia bicyclis: structural characteristics and antitumor activity. Algal Res. 2:51-58. https://doi.org/10.1016/j.algal.2012.10.002
- Farrar, M. D. & Ingham, E. 2004. Acne: inflammation. Clin. Dermatol. 22:380-384. https://doi.org/10.1016/j.clindermatol.2004.03.006
- Gollnick, H., Cunliffe, W., Berson, D., Dreno, B., Finlay, A., Leyden, J. J., Shalita, A. R. & Thiboutot, D. 2003. Management of acne: a report from a global alliance to improve outcomes in acne. J. Am. Acad. Dermatol. 49:S1-S37. https://doi.org/10.1067/mjd.2003.582
- Han, S., Lee, K., Yeo, J., Baek, H. & Park, K. 2010. Antibacterial and anti-inflammatory effects of honeybee (Apis mellifera) venom against acne-inducing bacteria. J. Med. Plants Res. 4:459-464.
- Isnansetyo, A. & Kamei, Y. 2009. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica O-BC30T. Int. J. Antimicrob. Agents 34:131-135. https://doi.org/10.1016/j.ijantimicag.2009.02.009
- Jeong, E. -S., Yoon, Y. -H. & Kim, J. -K. 2009. Contrasting correlation in the inhibition response of ADP-induced platelet aggregation and the anti-coagulant activities of algal fucoidans derived from Eisenia bicyclis and Undaria pinnatifida sporophylls (Mekabu). Fish. Aquat. Sci. 12:194-202.
- Jung, H. A., Jin, S. E., Ahn, B. R., Lee, C. M. & Choi, J. S. 2013. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem. Toxicol. 59:199-206. https://doi.org/10.1016/j.fct.2013.05.061
- Kang, K. A., Lee, K. H., Chae, S., Zhang, R., Jung, M. S., Ham, Y. M., Baik, J. S., Lee, N. H. & Hyun, J. W. 2006. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation. J. Cell Biochem. 97:609-620. https://doi.org/10.1002/jcb.20668
- Kim, J. Y., Oh, T. H., Kim, B. J., Kim, S. S., Lee, N. H. & Hyun, C. G. 2008. Chemical composition and anti-inflammatory effects of essential oil from Farfugium japonicum flower. J. Oleo Sci. 57:623-628. https://doi.org/10.5650/jos.57.623
- Kubo, I., Xu, Y. & Shimizu, K. 2004. Antibacterial activity of ent‐kaurene diterpenoids from Rabdosia rosthornii. Phytother. Res. 18:180-183. https://doi.org/10.1002/ptr.1421
-
Lee, D. -S., Kang, M. -S., Hwang, H. -J., Eom, S. -H., Yang, J. -Y., Lee, M. -S., Lee, W. -J., Jeon, Y. -J., Choi, J. -S. & Kim, Y. -M. 2008. Synergistic effect between dieckol from Ecklonia stolonifera and
$\beta$ -lactams against methicillin-resistant Staphylococcus aureus. Biotechnol. Bioprocess Eng. 13:758-764. https://doi.org/10.1007/s12257-008-0162-9 - Lee, Y. S., Han, C. H., Kang, S. H., Lee, S. -J., Kim, S. W., Shin, O. R., Sim, Y. -C., Lee, S. -J. & Cho, Y. -H. 2005. Synergistic effect between catechin and ciprofloxacin on chronic bacterial prostatitis rat model. Int. J. Urol. 12:383-389. https://doi.org/10.1111/j.1442-2042.2005.01052.x
- Lim, Y. -H., Kim, I. -H. & Seo, J. -J. 2007. In vitro activity of kaempferol isolated from the Impatiens balsamina alone and in combination with erythromycin or clindamycin against Propionibacterium acnes. J. Microbiol. 45:473-477.
- Maegawa, M. 1990. Ecological studies of Eisenia bicyclis (Kjellma) Setchell and Ecklonia cava Kjellman. Bull. Fac. Bioresour. Mie Univ. 4:73-145.
- McDonnell, G. & Russell, A. D. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12:147-179.
- Muddathir, A. M. & Mitsunaga, T. 2013. Evaluation of anti-acne activity of selected Sudanese medicinal plants. J. Wood Sci. 59:73-79. https://doi.org/10.1007/s10086-012-1303-5
- Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I. & Nakamura, T. 2002. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother. 50:889-893. https://doi.org/10.1093/jac/dkf222
- Nikaido, H. 1996. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178:5853-5859. https://doi.org/10.1128/jb.178.20.5853-5859.1996
- Okada, Y., Ishimaru, A., Suzuki, R. & Okuyama, T. 2004. A new phloroglucinol derivative from the brown alga Eisenia bicyclis: potential for the effective treatment of diabetic complications. J. Nat. Prod. 67:103-105. https://doi.org/10.1021/np030323j
- Park, J., Lee, J., Jung, E., Park, Y., Kim, K., Park, B., Jung, K., Park, E., Kim, J. & Park, D. 2004. In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur. J. Pharmacol. 496:189-195. https://doi.org/10.1016/j.ejphar.2004.05.047
- Perea, S., Gonzalez, G., Fothergill, A. W., Kirkpatrick, W. R., Rinaldi, M. G. & Patterson, T. F. 2002. In vitro interaction of caspofungin acetate with voriconazole against clinical isolates of Aspergillus spp. Antimicrob. Agents Chemother. 46:3039-3041. https://doi.org/10.1128/AAC.46.9.3039-3041.2002
- Pothitirat, W., Chomnawang, M. T. & Gritsanapan, W. 2010. Anti-acne-inducing bacterial activity of mangosteen fruit rind extracts. Med. Princ. Pract. 19:281-286. https://doi.org/10.1159/000312714
- Ravenscroft, J. 2005. Evidence based update on the management of acne. Arch. Dis. Child. Educ. Pract. Ed. 90:ep98-ep101.
- Shibata, T., Nagayama, K., Tanaka, R., Yamaguchi, K. & Nakamura, T. 2003. Inhibitory effects of brown algal phlorotannins on secretory phospholipase A2s, lipoxygenases and cyclooxygenases. J. Appl. Phycol. 15:61-66. https://doi.org/10.1023/A:1022972221002
- Taylor, P. W., Hamilton-Miller, J. M. T. & Stapleton, P. D. 2005. Antimicrobial properties of green tea catechins. Food Sci. Technol. Bull. 2:71-81.
- Weig, M. & Müller, F. -M. C. 2001. Synergism of voriconazole and terbinafine against Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob. Agents Chemother. 45:966-968. https://doi.org/10.1128/AAC.45.3.966-968.2001
- Yamaguchi, N., Satoh-Yamaguchi, K. & Ono, M. 2009. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine 16:369-376. https://doi.org/10.1016/j.phymed.2008.12.021
- Yoon, N. Y., Lee, S. -H., Shim, K. B., Lim, C., -W., Lee, M. -H., Cho, H. -A. & Xie, C. 2013. Quinone reductase induction activity of phlorotannins derived from Eisenia bicyclis in Hepa1c1c7 cells. Fish. Aquat. Sci. 16:1-5.
- Yoon, N. Y., Lee, S. -H., Wijesekara, I. & Kim, S. -K. 2011. In vitro and intracellular antioxidant activities of brown alga Eisenia bicyclis. Fish. Aquat. Sci. 14:179-185.
-
Zhao, W. -H., Hu, Z. -Q., Okubo, S., Hara, Y. & Shimamura, T. 2001. Mechanism of synergy between epigallocatechin gallate and
$\beta$ -lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45:1737-1742. https://doi.org/10.1128/AAC.45.6.1737-1742.2001
Cited by
- Nimbolide from Azadirachta indica and its derivatives plus first-generation cephalosporin antibiotics: a novel drug combination for wound-infecting pathogens vol.5, pp.109, 2015, https://doi.org/10.1039/C5RA16071E
- Anti-inflammatory Effects of Chitosan-phytochemical Conjugates against Propionibacterium acnes-induced Inflammation vol.49, pp.5, 2016, https://doi.org/10.5657/KFAS.2016.0589
- Oligochitosan as a potential anti-acne vulgaris agent: combined antibacterial effects against Propionibacterium acnes vol.26, pp.4, 2017, https://doi.org/10.1007/s10068-017-0118-y
- Potential biomedical applications of marine algae 2017, https://doi.org/10.1016/j.biortech.2017.05.198
- In vitro antiviral activity of dieckol and phlorofucofuroeckol-A isolated from edible brown alga Eisenia bicyclis against murine norovirus vol.30, pp.3, 2015, https://doi.org/10.4490/algae.2015.30.3.241
- Fabrication and characterization of phlorotannins/poly (vinyl alcohol) hydrogel for wound healing application 2018, https://doi.org/10.1080/09205063.2017.1374030
- Antimicrobial Action of Compounds from Marine Seaweed vol.14, pp.3, 2016, https://doi.org/10.3390/md14030052
- Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2 vol.120, 2017, https://doi.org/10.1016/j.supflu.2016.05.037
- Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria vol.15, pp.6, 2017, https://doi.org/10.3390/md15060167
- Fucofuroeckol-A from edible marine alga Eisenia bicyclis to restore antifungal activity of fluconazole against fluconazole-resistant Candida albicans 2017, https://doi.org/10.1007/s10811-017-1232-1
- Synergistic Antibacterial Activity of Ecklonia cava Extract against Anti-biotic Resistant Enterococcus faecalis vol.48, pp.1, 2015, https://doi.org/10.5657/KFAS.2015.0051
- Synergistic Antibacterial Activity of Ecklonia cava (Phaeophyceae: Laminariales) against Listeria monocytogenes (Bacillales: Listeriaceae) vol.18, pp.1, 2015, https://doi.org/10.5657/FAS.2015.0001
- Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications vol.14, pp.4, 2016, https://doi.org/10.3390/md14040081
- Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts vol.196, 2017, https://doi.org/10.1016/j.cbpc.2017.04.001
- In vitro Antibacterial and Synergistic Activity of an Ecklonia cava Extract against Anti biotic-Resistant Streptococcus parauberis vol.18, pp.3, 2015, https://doi.org/10.5657/FAS.2015.0241
- Synergistic Antimicrobial Effect of Sargassum serratifolium (C. Agardh) C. Agardh Extract against Human Skin Pathogens vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.241
- Seaweed Bioactive Compounds against Pathogens and Microalgae: Potential Uses on Pharmacology and Harmful Algae Bloom Control vol.16, pp.2, 2018, https://doi.org/10.3390/md16020055
- In Vitro Antibacterial Activity of Phlorotannins from Edible Brown Algae, Eisenia bicyclis Against Streptomycin-Resistant Listeria monocytogenes vol.58, pp.1, 2018, https://doi.org/10.1007/s12088-017-0693-x
- Evaluation of Antimicrobial Activities of Seaweed Resources from Zhejiang Coast, China vol.10, pp.7, 2018, https://doi.org/10.3390/su10072158
- Potential interactions bacteria-brown algae pp.1573-5176, 2019, https://doi.org/10.1007/s10811-018-1573-4
- Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment vol.6, pp.1, 2014, https://doi.org/10.4103/2231-4040.150364
- Antibacterial effect of Ishige okamurae extract against cutaneous bacterial pathogens and its synergistic antibacterial effect against Pseudomonas aeruginosa vol.21, pp.7, 2014, https://doi.org/10.1186/s41240-018-0096-x
- Ecklonia cava (Laminariales) and Sargassum horneri (Fucales) synergistically inhibit the lipopolysaccharide-induced inflammation via blocking NF-κB and MAPK pathways vol.34, pp.1, 2019, https://doi.org/10.4490/algae.2019.34.2.10
- Characterizing Eckol as a Therapeutic Aid: A Systematic Review vol.17, pp.6, 2014, https://doi.org/10.3390/md17060361
- Bioactivity-guided identification of anti-AHPND (acute hepatopancreatic necrosis disease) metabolites of Ecklonia arborea vol.31, pp.5, 2014, https://doi.org/10.1007/s10811-019-01818-5
- Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications vol.24, pp.22, 2014, https://doi.org/10.3390/molecules24224182
- Seaweeds in Pig Nutrition vol.9, pp.12, 2019, https://doi.org/10.3390/ani9121126
- Potential Use of Seaweed Bioactive Compounds in Skincare—A Review vol.17, pp.12, 2019, https://doi.org/10.3390/md17120688
- Application of Antibiotics/Antimicrobial Agents on Dental Caries vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/5658212
- Antimicrobial Lipids from Plants and Marine Organisms: An Overview of the Current State-of-the-Art and Future Prospects vol.9, pp.8, 2014, https://doi.org/10.3390/antibiotics9080441
- Eckol protects against acute experimental colitis in mice: Possible involvement of Reg3g vol.73, pp.None, 2014, https://doi.org/10.1016/j.jff.2020.104088
- Macroalgae as a Source of Valuable Antimicrobial Compounds: Extraction and Applications vol.9, pp.10, 2014, https://doi.org/10.3390/antibiotics9100642
- Staphylococcus epidermidis and Cutibacterium acnes : Two Major Sentinels of Skin Microbiota and the Influence of Cosmetics vol.8, pp.11, 2014, https://doi.org/10.3390/microorganisms8111752
- In vitro Synergistic Antibacterial Effect of Ozonized Antarctic Krill Oil in Combination with Antibiotics against Bacterial Skin Pathogens vol.30, pp.1, 2014, https://doi.org/10.1080/10498850.2020.1854408
- The Protective Effects of Cath-MH With Anti-Propionibacterium Acnes and Anti-Inflammation Functions on Acne Vulgaris vol.12, pp.None, 2014, https://doi.org/10.3389/fphar.2021.788358
- A Biorefinery Approach to the Biomass of the Seaweed Undaria pinnatifida (Harvey Suringar, 1873): Obtaining Phlorotannins-Enriched Extracts for Wound Healing vol.11, pp.3, 2021, https://doi.org/10.3390/biom11030461
- Antimicrobials from Seaweeds for Food Applications vol.19, pp.4, 2014, https://doi.org/10.3390/md19040211
- Antifungal and Larvicidal Activities of Phlorotannins from Brown Seaweeds vol.19, pp.4, 2014, https://doi.org/10.3390/md19040223
- Dieckol: a brown algal phlorotannin with biological potential vol.142, pp.None, 2014, https://doi.org/10.1016/j.biopha.2021.111988
- Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics vol.19, pp.10, 2014, https://doi.org/10.3390/md19100552