DOI QR코드

DOI QR Code

In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria

  • Lee, Jeong-Ha (Department of Microbiology, Pukyong National University) ;
  • Eom, Sung-Hwan (Department of Food Science and Technology, Pukyong National University) ;
  • Lee, Eun-Hye (Department of Food Science and Technology, Pukyong National University) ;
  • Jung, Yeoun-Joong (Department of Food Science and Technology, Pukyong National University) ;
  • Kim, Hyo-Jung (Department of Food Science and Technology, Pukyong National University) ;
  • Jo, Mi-Ra (Food Safety Research Division, National Fisheries Research & Development Institute) ;
  • Son, Kwang-Tae (Food Safety Research Division, National Fisheries Research & Development Institute) ;
  • Lee, Hee-Jung (Food Safety Research Division, National Fisheries Research & Development Institute) ;
  • Kim, Ji Hoe (Food Safety Research Division, National Fisheries Research & Development Institute) ;
  • Lee, Myung-Suk (Department of Microbiology, Pukyong National University) ;
  • Kim, Young-Mog (Department of Food Science and Technology, Pukyong National University)
  • Received : 2014.02.01
  • Accepted : 2014.03.07
  • Published : 2014.03.15

Abstract

To develop effective and safe acne vulgaris therapies with a continuing demand for new solutions, we investigated unique efficacy of an antibacterial agent from marine brown alga Eisenia bicyclis in treating acne vulgaris. The methanolic extract of E. bicyclis exhibited potential antibacterial activity against acne-related bacteria. The ethyl acetate fraction showed the strongest antibacterial activity against the bacteria among solvent fractions. Six compounds (1-6), previously isolated from the ethyl acetate fraction of E. bicyclis, were evaluated for antibacterial activity against acne-related bacteria. Among them, compound 2 (fucofuroeckol-A [FF]) exhibited the highest antibacterial activity against acne-related bacteria with a minimum inhibitory concentration (MIC) ranging from 32 to $128{\mu}g\;mL^{-1}$. Furthermore, FF clearly reversed the high-level erythromycin and lincomycin resistance of Propionibacterium acnes. The MIC values of erythromycin against P. acnes were dramatically reduced from 2,048 to $1.0{\mu}g\;mL^{-1}$ in combination with MIC of FF ($64{\mu}g\;mL^{-1}$). The fractional inhibitory concentration indices of erythromycin and lincomycin were measured from 0.500 to 0.751 in combination with 32 or $64{\mu}g\;mL^{-1}$ of FF against all tested P. acnes strains, suggesting that FF-erythromycin and FF-lincomycin combinations exert a weak synergistic effect against P. acnes. The results of this study suggest that the compounds derived from E. bicyclis can be a potential source of natural antibacterial agents and a pharmaceutical component against acnerelated bacteria.

Keywords

References

  1. Afolayan, A. J. 2003. Extracts from the shoots of Arctotis arctotoides inhibit the growth of bacteria and fungi. Pharm. Biol. 41:22-25. https://doi.org/10.1076/phbi.41.1.22.14692
  2. Ahn, B. R., Moon, H. E., Kim, H. R., Jung, H. A. & Choi, J. S. 2012. Neuroprotective effect of edible brown alga Eisenia bicyclis on amyloid beta peptide-induced toxicity in PC12 cells. Arch. Pharm. Res. 35:1989-1998. https://doi.org/10.1007/s12272-012-1116-5
  3. Choi, J. -G., Kang, O. -H., Brice, O. -O., Lee, Y. -S., Chae, H. -S., Oh, Y. -C., Sohn, D. -H., Park, H., Choi, H. -G., Kim, S. -G., Shin, D. -W. & Kwon, D. -Y. 2010. Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Foodborne Pathog. Dis. 7:435-441. https://doi.org/10.1089/fpd.2009.0434
  4. Choi, J. -S., Bae, H. -J., Kim, S. -J. & Choi, I. S. 2011. In vitro antibacterial and anti-inflammatory properties of seaweed extracts against acne inducing bacteria, Propionibacterium acnes. J. Environ. Biol. 32:313-318.
  5. Clinical and Laboratory Standards Institute (CLSI). 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard, 8th ed. CLSI document M07-A8. CLSI, Wayne, PA, 68 pp.
  6. Clinical and Laboratory Standards Institute (CLSI). 2009. Performance standards for antimicrobial susceptibility testing: 18th informational supplement. CLSI document M100-S19. CLSI, Wayne, PA, 206 pp.
  7. Davies, J. & Davies, D. 2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74:417-433. https://doi.org/10.1128/MMBR.00016-10
  8. Eom, S. -H., Kim, D. -H., Lee, S. -H., Yoon, N. -Y., Kim, J. H., Kim, T. H., Chung, Y. -H., Kim, S. -B., Kim, Y. -M., Kim, H. -W., Lee, M. -S. & Kim, Y. -M. 2013. In vitro antibacterial activity and synergistic antibiotic effects of phlorotannins isolated from Eisenia bicyclis against methicillin‐resistant Staphylococcus aureus. Phytother. Res. 27:1260-1264. https://doi.org/10.1002/ptr.4851
  9. Eom, S. -H., Park, J. -H., Yu, D. -U., Choi, J. -I., Choi, J. -D., Lee, M. -S. & Kim, Y. -M. 2011. Antimicrobial activity of brown alga Eisenia bicyclis against methicillin-resistant Staphylococcus aureus. Fish. Aquat. Sci. 14:251-256.
  10. Ermakova, S., Men'shova, R., Vishchuk, O., Kim, S. -M., Um, B. -H., Isakov, V. & Zvyagintseva, T. 2013. Water-soluble polysaccharides from the brown alga Eisenia bicyclis: structural characteristics and antitumor activity. Algal Res. 2:51-58. https://doi.org/10.1016/j.algal.2012.10.002
  11. Farrar, M. D. & Ingham, E. 2004. Acne: inflammation. Clin. Dermatol. 22:380-384. https://doi.org/10.1016/j.clindermatol.2004.03.006
  12. Gollnick, H., Cunliffe, W., Berson, D., Dreno, B., Finlay, A., Leyden, J. J., Shalita, A. R. & Thiboutot, D. 2003. Management of acne: a report from a global alliance to improve outcomes in acne. J. Am. Acad. Dermatol. 49:S1-S37. https://doi.org/10.1067/mjd.2003.582
  13. Han, S., Lee, K., Yeo, J., Baek, H. & Park, K. 2010. Antibacterial and anti-inflammatory effects of honeybee (Apis mellifera) venom against acne-inducing bacteria. J. Med. Plants Res. 4:459-464.
  14. Isnansetyo, A. & Kamei, Y. 2009. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica O-BC30T. Int. J. Antimicrob. Agents 34:131-135. https://doi.org/10.1016/j.ijantimicag.2009.02.009
  15. Jeong, E. -S., Yoon, Y. -H. & Kim, J. -K. 2009. Contrasting correlation in the inhibition response of ADP-induced platelet aggregation and the anti-coagulant activities of algal fucoidans derived from Eisenia bicyclis and Undaria pinnatifida sporophylls (Mekabu). Fish. Aquat. Sci. 12:194-202.
  16. Jung, H. A., Jin, S. E., Ahn, B. R., Lee, C. M. & Choi, J. S. 2013. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem. Toxicol. 59:199-206. https://doi.org/10.1016/j.fct.2013.05.061
  17. Kang, K. A., Lee, K. H., Chae, S., Zhang, R., Jung, M. S., Ham, Y. M., Baik, J. S., Lee, N. H. & Hyun, J. W. 2006. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation. J. Cell Biochem. 97:609-620. https://doi.org/10.1002/jcb.20668
  18. Kim, J. Y., Oh, T. H., Kim, B. J., Kim, S. S., Lee, N. H. & Hyun, C. G. 2008. Chemical composition and anti-inflammatory effects of essential oil from Farfugium japonicum flower. J. Oleo Sci. 57:623-628. https://doi.org/10.5650/jos.57.623
  19. Kubo, I., Xu, Y. & Shimizu, K. 2004. Antibacterial activity of ent‐kaurene diterpenoids from Rabdosia rosthornii. Phytother. Res. 18:180-183. https://doi.org/10.1002/ptr.1421
  20. Lee, D. -S., Kang, M. -S., Hwang, H. -J., Eom, S. -H., Yang, J. -Y., Lee, M. -S., Lee, W. -J., Jeon, Y. -J., Choi, J. -S. & Kim, Y. -M. 2008. Synergistic effect between dieckol from Ecklonia stolonifera and $\beta$-lactams against methicillin-resistant Staphylococcus aureus. Biotechnol. Bioprocess Eng. 13:758-764. https://doi.org/10.1007/s12257-008-0162-9
  21. Lee, Y. S., Han, C. H., Kang, S. H., Lee, S. -J., Kim, S. W., Shin, O. R., Sim, Y. -C., Lee, S. -J. & Cho, Y. -H. 2005. Synergistic effect between catechin and ciprofloxacin on chronic bacterial prostatitis rat model. Int. J. Urol. 12:383-389. https://doi.org/10.1111/j.1442-2042.2005.01052.x
  22. Lim, Y. -H., Kim, I. -H. & Seo, J. -J. 2007. In vitro activity of kaempferol isolated from the Impatiens balsamina alone and in combination with erythromycin or clindamycin against Propionibacterium acnes. J. Microbiol. 45:473-477.
  23. Maegawa, M. 1990. Ecological studies of Eisenia bicyclis (Kjellma) Setchell and Ecklonia cava Kjellman. Bull. Fac. Bioresour. Mie Univ. 4:73-145.
  24. McDonnell, G. & Russell, A. D. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12:147-179.
  25. Muddathir, A. M. & Mitsunaga, T. 2013. Evaluation of anti-acne activity of selected Sudanese medicinal plants. J. Wood Sci. 59:73-79. https://doi.org/10.1007/s10086-012-1303-5
  26. Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I. & Nakamura, T. 2002. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother. 50:889-893. https://doi.org/10.1093/jac/dkf222
  27. Nikaido, H. 1996. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178:5853-5859. https://doi.org/10.1128/jb.178.20.5853-5859.1996
  28. Okada, Y., Ishimaru, A., Suzuki, R. & Okuyama, T. 2004. A new phloroglucinol derivative from the brown alga Eisenia bicyclis: potential for the effective treatment of diabetic complications. J. Nat. Prod. 67:103-105. https://doi.org/10.1021/np030323j
  29. Park, J., Lee, J., Jung, E., Park, Y., Kim, K., Park, B., Jung, K., Park, E., Kim, J. & Park, D. 2004. In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur. J. Pharmacol. 496:189-195. https://doi.org/10.1016/j.ejphar.2004.05.047
  30. Perea, S., Gonzalez, G., Fothergill, A. W., Kirkpatrick, W. R., Rinaldi, M. G. & Patterson, T. F. 2002. In vitro interaction of caspofungin acetate with voriconazole against clinical isolates of Aspergillus spp. Antimicrob. Agents Chemother. 46:3039-3041. https://doi.org/10.1128/AAC.46.9.3039-3041.2002
  31. Pothitirat, W., Chomnawang, M. T. & Gritsanapan, W. 2010. Anti-acne-inducing bacterial activity of mangosteen fruit rind extracts. Med. Princ. Pract. 19:281-286. https://doi.org/10.1159/000312714
  32. Ravenscroft, J. 2005. Evidence based update on the management of acne. Arch. Dis. Child. Educ. Pract. Ed. 90:ep98-ep101.
  33. Shibata, T., Nagayama, K., Tanaka, R., Yamaguchi, K. & Nakamura, T. 2003. Inhibitory effects of brown algal phlorotannins on secretory phospholipase A2s, lipoxygenases and cyclooxygenases. J. Appl. Phycol. 15:61-66. https://doi.org/10.1023/A:1022972221002
  34. Taylor, P. W., Hamilton-Miller, J. M. T. & Stapleton, P. D. 2005. Antimicrobial properties of green tea catechins. Food Sci. Technol. Bull. 2:71-81.
  35. Weig, M. & Müller, F. -M. C. 2001. Synergism of voriconazole and terbinafine against Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob. Agents Chemother. 45:966-968. https://doi.org/10.1128/AAC.45.3.966-968.2001
  36. Yamaguchi, N., Satoh-Yamaguchi, K. & Ono, M. 2009. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine 16:369-376. https://doi.org/10.1016/j.phymed.2008.12.021
  37. Yoon, N. Y., Lee, S. -H., Shim, K. B., Lim, C., -W., Lee, M. -H., Cho, H. -A. & Xie, C. 2013. Quinone reductase induction activity of phlorotannins derived from Eisenia bicyclis in Hepa1c1c7 cells. Fish. Aquat. Sci. 16:1-5.
  38. Yoon, N. Y., Lee, S. -H., Wijesekara, I. & Kim, S. -K. 2011. In vitro and intracellular antioxidant activities of brown alga Eisenia bicyclis. Fish. Aquat. Sci. 14:179-185.
  39. Zhao, W. -H., Hu, Z. -Q., Okubo, S., Hara, Y. & Shimamura, T. 2001. Mechanism of synergy between epigallocatechin gallate and $\beta$-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45:1737-1742. https://doi.org/10.1128/AAC.45.6.1737-1742.2001

Cited by

  1. Nimbolide from Azadirachta indica and its derivatives plus first-generation cephalosporin antibiotics: a novel drug combination for wound-infecting pathogens vol.5, pp.109, 2015, https://doi.org/10.1039/C5RA16071E
  2. Anti-inflammatory Effects of Chitosan-phytochemical Conjugates against Propionibacterium acnes-induced Inflammation vol.49, pp.5, 2016, https://doi.org/10.5657/KFAS.2016.0589
  3. Oligochitosan as a potential anti-acne vulgaris agent: combined antibacterial effects against Propionibacterium acnes vol.26, pp.4, 2017, https://doi.org/10.1007/s10068-017-0118-y
  4. Potential biomedical applications of marine algae 2017, https://doi.org/10.1016/j.biortech.2017.05.198
  5. In vitro antiviral activity of dieckol and phlorofucofuroeckol-A isolated from edible brown alga Eisenia bicyclis against murine norovirus vol.30, pp.3, 2015, https://doi.org/10.4490/algae.2015.30.3.241
  6. Fabrication and characterization of phlorotannins/poly (vinyl alcohol) hydrogel for wound healing application 2018, https://doi.org/10.1080/09205063.2017.1374030
  7. Antimicrobial Action of Compounds from Marine Seaweed vol.14, pp.3, 2016, https://doi.org/10.3390/md14030052
  8. Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2 vol.120, 2017, https://doi.org/10.1016/j.supflu.2016.05.037
  9. Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria vol.15, pp.6, 2017, https://doi.org/10.3390/md15060167
  10. Fucofuroeckol-A from edible marine alga Eisenia bicyclis to restore antifungal activity of fluconazole against fluconazole-resistant Candida albicans 2017, https://doi.org/10.1007/s10811-017-1232-1
  11. Synergistic Antibacterial Activity of Ecklonia cava Extract against Anti-biotic Resistant Enterococcus faecalis vol.48, pp.1, 2015, https://doi.org/10.5657/KFAS.2015.0051
  12. Synergistic Antibacterial Activity of Ecklonia cava (Phaeophyceae: Laminariales) against Listeria monocytogenes (Bacillales: Listeriaceae) vol.18, pp.1, 2015, https://doi.org/10.5657/FAS.2015.0001
  13. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications vol.14, pp.4, 2016, https://doi.org/10.3390/md14040081
  14. Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts vol.196, 2017, https://doi.org/10.1016/j.cbpc.2017.04.001
  15. In vitro Antibacterial and Synergistic Activity of an Ecklonia cava Extract against Anti biotic-Resistant Streptococcus parauberis vol.18, pp.3, 2015, https://doi.org/10.5657/FAS.2015.0241
  16. Synergistic Antimicrobial Effect of Sargassum serratifolium (C. Agardh) C. Agardh Extract against Human Skin Pathogens vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.241
  17. Seaweed Bioactive Compounds against Pathogens and Microalgae: Potential Uses on Pharmacology and Harmful Algae Bloom Control vol.16, pp.2, 2018, https://doi.org/10.3390/md16020055
  18. In Vitro Antibacterial Activity of Phlorotannins from Edible Brown Algae, Eisenia bicyclis Against Streptomycin-Resistant Listeria monocytogenes vol.58, pp.1, 2018, https://doi.org/10.1007/s12088-017-0693-x
  19. Evaluation of Antimicrobial Activities of Seaweed Resources from Zhejiang Coast, China vol.10, pp.7, 2018, https://doi.org/10.3390/su10072158
  20. Potential interactions bacteria-brown algae pp.1573-5176, 2019, https://doi.org/10.1007/s10811-018-1573-4
  21. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment vol.6, pp.1, 2014, https://doi.org/10.4103/2231-4040.150364
  22. Antibacterial effect of Ishige okamurae extract against cutaneous bacterial pathogens and its synergistic antibacterial effect against Pseudomonas aeruginosa vol.21, pp.7, 2014, https://doi.org/10.1186/s41240-018-0096-x
  23. Ecklonia cava (Laminariales) and Sargassum horneri (Fucales) synergistically inhibit the lipopolysaccharide-induced inflammation via blocking NF-κB and MAPK pathways vol.34, pp.1, 2019, https://doi.org/10.4490/algae.2019.34.2.10
  24. Characterizing Eckol as a Therapeutic Aid: A Systematic Review vol.17, pp.6, 2014, https://doi.org/10.3390/md17060361
  25. Bioactivity-guided identification of anti-AHPND (acute hepatopancreatic necrosis disease) metabolites of Ecklonia arborea vol.31, pp.5, 2014, https://doi.org/10.1007/s10811-019-01818-5
  26. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications vol.24, pp.22, 2014, https://doi.org/10.3390/molecules24224182
  27. Seaweeds in Pig Nutrition vol.9, pp.12, 2019, https://doi.org/10.3390/ani9121126
  28. Potential Use of Seaweed Bioactive Compounds in Skincare—A Review vol.17, pp.12, 2019, https://doi.org/10.3390/md17120688
  29. Application of Antibiotics/Antimicrobial Agents on Dental Caries vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/5658212
  30. Antimicrobial Lipids from Plants and Marine Organisms: An Overview of the Current State-of-the-Art and Future Prospects vol.9, pp.8, 2014, https://doi.org/10.3390/antibiotics9080441
  31. Eckol protects against acute experimental colitis in mice: Possible involvement of Reg3g vol.73, pp.None, 2014, https://doi.org/10.1016/j.jff.2020.104088
  32. Macroalgae as a Source of Valuable Antimicrobial Compounds: Extraction and Applications vol.9, pp.10, 2014, https://doi.org/10.3390/antibiotics9100642
  33. Staphylococcus epidermidis and Cutibacterium acnes : Two Major Sentinels of Skin Microbiota and the Influence of Cosmetics vol.8, pp.11, 2014, https://doi.org/10.3390/microorganisms8111752
  34. In vitro Synergistic Antibacterial Effect of Ozonized Antarctic Krill Oil in Combination with Antibiotics against Bacterial Skin Pathogens vol.30, pp.1, 2014, https://doi.org/10.1080/10498850.2020.1854408
  35. The Protective Effects of Cath-MH With Anti-Propionibacterium Acnes and Anti-Inflammation Functions on Acne Vulgaris vol.12, pp.None, 2014, https://doi.org/10.3389/fphar.2021.788358
  36. A Biorefinery Approach to the Biomass of the Seaweed Undaria pinnatifida (Harvey Suringar, 1873): Obtaining Phlorotannins-Enriched Extracts for Wound Healing vol.11, pp.3, 2021, https://doi.org/10.3390/biom11030461
  37. Antimicrobials from Seaweeds for Food Applications vol.19, pp.4, 2014, https://doi.org/10.3390/md19040211
  38. Antifungal and Larvicidal Activities of Phlorotannins from Brown Seaweeds vol.19, pp.4, 2014, https://doi.org/10.3390/md19040223
  39. Dieckol: a brown algal phlorotannin with biological potential vol.142, pp.None, 2014, https://doi.org/10.1016/j.biopha.2021.111988
  40. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics vol.19, pp.10, 2014, https://doi.org/10.3390/md19100552