DOI QR코드

DOI QR Code

Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system

  • Corey, Peter (Scotian Halibut Ltd.) ;
  • Kim, Jang K. (Department of Marine Sciences, University of Connecticut, One University Place) ;
  • Duston, Jim (Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University) ;
  • Garbary, David J. (Department of Biology, St. Francis Xavier University)
  • Received : 2013.09.30
  • Accepted : 2014.02.10
  • Published : 2014.03.15

Abstract

Palmaria palmata was integrated with Atlantic halibut Hippoglossus hippoglossus on a commercial farm for one year starting in November, with a temperature range of 0.4 to $19.1^{\circ}C$. The seaweed was grown in nine plastic mesh cages (each $1.25m^3$ volume) suspended in a concrete sump tank ($46m^3$) in each of three recirculating systems. Two tanks received effluent water from tanks stocked with halibut, and the third received ambient seawater serving as a control. Thalli were tumbled by continuous aeration, and held under a constant photoperiod of 16 : 8 (L : D). Palmaria stocking density was $2.95kg\;m^{-3}$ initially, increasing to $9.85kg\;m^{-3}$ after a year. Specific growth rate was highest from April to June (8.0 to $9.0^{\circ}C$), 1.1% $d^{-1}$ in the halibut effluent and 0.8% $d^{-1}$ in the control, but declined to zero or less than zero above $14^{\circ}C$. Total tissue nitrogen of Palmaria in effluent water was 4.2 to 4.4% DW from January to October, whereas tissue N in the control system declined to 3.0-3.6% DW from April to October. Tissue carbon was independent of seawater source at 39.9% DW. Estimated tank space required by Palmaria for 50% removal of the nitrogen excreted by 100 t of halibut during winter is about 29,000 to $38,000m^2$, ten times the area required for halibut culture. Fifty percent removal of carbon from the same system requires 7,200 to $9,800m^2$ cultivation area. Integration of P. palmata with Atlantic halibut is feasible below $10^{\circ}C$, but is impractical during summer months due to disintegration of thalli associated with reproductive maturation.

Keywords

References

  1. Abreu, M. H., Pereira, R., Yarish, C., Buschmann, A. H. & Sousa-Pinto, I. 2011. IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77-87. https://doi.org/10.1016/j.aquaculture.2010.12.036
  2. Barsanti, L. & Gualtieri, P. 2006. Algae: anatomy, biochemistry, and biotechnology. CRC Press, Boca Raton, FL, 301 pp.
  3. Blancheton, J. -P., Bosc, P., Hussenot, J. M. -E., d'Orbcastel, E. R. & Romain, D. 2009. The 'new' European fish culture systems: recirculating systems, offshore cages, integrated systems. Cah. Agric. 18:227-234 (in French with English abstract).
  4. Bower, C. E. & Bidwell, J. P. 1978. Ionization of ammonia in seawater: effects of temperature, pH, and salinity. J. Fish. Res. Board Can. 35:1012-1016. https://doi.org/10.1139/f78-165
  5. Caines, S., Manríquez-Hernández, J. A., Duston, J., Corey, P. & Garbary, D. J. (2014). Intermittent aeration affects the bioremediation potential of two red algae cultured in finfish effluent. J. Appl. Phycol. Advanced online publication. http://dx.doi.org/10.1007/s10811-014-0247-0.
  6. Corey, P., Kim, J. K., Duston, J., Garbary, D. J. & Prithiviraj, B. 2013. Bioremediation of Palmaria palmata and Chondrus crispus (Basin Head): effect of nitrate and ammonium ratio as nitrogen source on nutrient removal. J. Appl. Phycol. 25:1349-1358. https://doi.org/10.1007/s10811-013-9977-7
  7. Corey, P., Kim, J. K., Garbary, D. J., Prithiviraj, B. & Duston, J. 2012. Cultivation of red macroalgae for potential integration with Atlantic halibut: effects of temperature and nitrate concentration on growth and nitrogen removal. J. Appl. Phycol. 24:441-448. https://doi.org/10.1007/s10811-011-9734-8
  8. Cornish, M. L. & Garbary, D. J. 2010. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25:155-171. https://doi.org/10.4490/algae.2010.25.4.155
  9. Davies, I. M. & Slaski, R. J. 2003. Waste production by farmed Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 219:495-502. https://doi.org/10.1016/S0044-8486(02)00645-2
  10. Demetropoulos, C. & Langdon, C. 2004. Pacific dulse (Palmaria mollis) as a food and biofilter in recirculated, land-based abalone culture systems. Aquac. Eng. 32:57-75. https://doi.org/10.1016/j.aquaeng.2004.08.005
  11. Garbary, D. J., Beveridge, L. F., Flynn, A. D. & White, K. L. 2012. Population ecology of Palmaria palmata (Palmariales, Rhodophyta) from harvested and non-harvested shores on Digby Neck, Nova Scotia, Canada. Algae 27:33-42. https://doi.org/10.4490/algae.2012.27.1.033
  12. Hafting, J. T. 1999. A novel technique for propagation of Porphyra yezoensis Ueda blades in suspension cultures via monospores. J. Appl. Phycol. 11:361-367. https://doi.org/10.1023/A:1008183402730
  13. Haglund, K. & Pedersén, M. 1993. Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden: growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control. J. Appl. Phycol. 5:271-284. https://doi.org/10.1007/BF02186230
  14. Hallaraker, H., Folkvord, A. & Stefansson, S. O. 1995. Growth of juvenile halibut (Hippoglossus hippoglossus) related to temperature, day length and feeding regime. Neth. J. Sea Res. 34:139-147. https://doi.org/10.1016/0077-7579(95)90022-5
  15. Jonassen, T. M., Imsland, A. K., Kadowaki, S. & Stefansson, S. O. 2000. Interaction of temperature and photoperiod on growth of Atlantic halibut Hippoglossus hippoglossus L. Aquac. Res. 31:219-227. https://doi.org/10.1046/j.1365-2109.2000.00447.x
  16. Jones, M. N. 1984. Nitrate reduction by shaking with cadmium: alternative to cadmium columns. Water Res. 18:643-646. https://doi.org/10.1016/0043-1354(84)90215-X
  17. Kim, J. K., Duston, J., Corey, P. & Garbary, D. J. 2013. Marine finfish effluent bioremediation: effects of stocking density and temperature on nitrogen removal capacity of Chondrus crispus and Palmaria palmata (Rhodophyta). Aquaculture 414-415:210-216. https://doi.org/10.1016/j.aquaculture.2013.08.008
  18. Kim, J. K., Kraemer, G. P., Neefus, C. D., Chung, I. K. & Yarish, C. 2007. Effects of temperature and ammonium on growth, pigment production and nitrogen uptake in four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J. Appl. Phycol. 19:431-440. https://doi.org/10.1007/s10811-006-9150-7
  19. Kim, J. K., Kraemer, G. P. & Yarish, C. 2008. Physiological activity of Porphyra in relation to eulittoral zonation. J. Exp. Mar. Biol. Ecol. 365:75-85. https://doi.org/10.1016/j.jembe.2008.07.040
  20. Kubler, J. E. & Raven, J. A. 1995. The interaction between inorganic carbon acquisition and light supply in Palmaria palmata (Rhodophyta). J. Phycol. 31:369-375. https://doi.org/10.1111/j.0022-3646.1995.00369.x
  21. Liddicoat, M. I., Tibbitts, S. & Butler, E. I. 1975. The determination of ammonia in seawater. Limnol. Oceanogr. 20:131-132. https://doi.org/10.4319/lo.1975.20.1.0131
  22. Lobban, C. S. & Harrison, P. J. 1996. Seaweed ecology and physiology. Cambridge University Press, New York, NY, 366 pp.
  23. Lukeman, R. J., Beveridge, L. F., Flynn, A. D. & Garbary, D. J. 2012. A mathematical model of the commercial harvest of Palmaria palmata (Palmariales, Rhodophyta) on Digby Neck, Nova Scotia, Canada. Algae 27:43-54. https://doi.org/10.4490/algae.2012.27.1.043
  24. Martinez, B. & Rico, J. M. 2002. Seasonal variation of P content and major N pools in Palmaria palmata (Rhodophyta). J. Phycol. 38:1082-1089. https://doi.org/10.1046/j.1529-8817.2002.01217.x
  25. Matos, J., Costa, S., Rodrigues, A., Pereira, R. & Pinto, I. S. 2006. Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture 252:31-42. https://doi.org/10.1016/j.aquaculture.2005.11.047
  26. Morgan, K. C. & Simpson, F. J. 1981a. Cultivation of Palmaria (Rhodymenia) palmata: effect of high concentrations of nitrate and ammonium on growth and nitrogen uptake. Aquat. Bot. 11:167-171. https://doi.org/10.1016/0304-3770(81)90057-7
  27. Morgan, K. C. & Simpson, F. J. 1981b. The cultivation of Palmaria palmata: effect of light intensity and temperature on growth and chemical composition. Bot. Mar. 24:547-552.
  28. Otsuki, T. 2001. A study for the biological $CO_2$ fixation and utilization system. Sci. Total Environ. 277:21-25. https://doi.org/10.1016/S0048-9697(01)00831-2
  29. Pagand, P., Blancheton, J. -P., Lemoalle, J. & Casellas, C. 2000. The use of high rate algal ponds for the treatment of marine effluent from a recirculating fish rearing system. Aquac. Res. 31:729-736. https://doi.org/10.1046/j.1365-2109.2000.00493.x
  30. Parsons, T. R., Maita, Y. & Lalli, C. M. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 173 pp.
  31. Tang, Q., Zhang, J. & Fang, J. 2011. Shellfish and seaweed mariculture increase atmospheric $CO_2$ absorption by coastal ecosystems. Mar. Ecol. Prog. Ser. 424:97-104. https://doi.org/10.3354/meps08979
  32. Timmons, M. B., Ebeling, J. M., Wheaton, F. W., Summerfelt, S. T. & Vinci, B. J. 2002. Recirculating aquaculture systems. 2nd ed. Cayuga Aqua Ventures, Ithaca, NY, 769 pp.
  33. Troell, M., Rönnbäck, P., Halling, C., Kautsky, N. & Buschmann, A. 1999. Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture. J. Appl. Phycol. 11:89-97. https://doi.org/10.1023/A:1008070400208
  34. White, K. L., Kim, J. K. & Garbary, D. J. 2011. Effects of landbased fish farm effluent on the morphology and growth of Ascophyllum nodosum (Fucales, Phaeophyceae) in southwestern Nova Scotia. Algae 26:253-263. https://doi.org/10.4490/algae.2011.26.3.253

Cited by

  1. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary vol.433, 2014, https://doi.org/10.1016/j.aquaculture.2014.05.034
  2. Effect of irradiance on bioremediation capacity of the red algae Chondrus crispus and Palmaria palmata vol.24, pp.1, 2016, https://doi.org/10.1007/s10499-015-9907-6
  3. Adaptations of a green tide formingUlva linza(Ulvophyceae, Chlorophyta) to selected salinity and nutrients conditions mimicking representative environments in the Yellow Sea vol.55, pp.2, 2016, https://doi.org/10.2216/15-67.1
  4. Use of sugar kelp aquaculture in Long Island Sound and the Bronx River Estuary for nutrient extraction vol.531, 2015, https://doi.org/10.3354/meps11331
  5. Development of an innovative ring-shaped cultivation system for a land-based cultivation of marine macroalgae vol.77, 2017, https://doi.org/10.1016/j.aquaeng.2017.01.005
  6. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.3.3
  7. Development of a sustainable land-based Gracilaria cultivation system vol.29, pp.3, 2014, https://doi.org/10.4490/algae.2014.29.3.217
  8. Nutrient removal ability of seaweeds on Pyropia yezoensis aquaculture rafts in China’s radial sandbanks vol.137, 2017, https://doi.org/10.1016/j.aquabot.2016.11.011
  9. Nitrogen allocation of Gracilaria tikvahiae grown in urbanized estuaries of Long Island Sound and New York City, USA: a preliminary evaluation of ocean farmed Gracilaria for alternative fish feeds vol.29, pp.3, 2014, https://doi.org/10.4490/algae.2014.29.3.227
  10. Intensive land-based production of red and green macroalgae for human consumption in the Pacific Northwest: an evaluation of seasonal growth, yield, nutritional composition, and contaminant levels vol.33, pp.1, 2018, https://doi.org/10.4490/algae.2018.33.2.21
  11. Bioremediation efficiency of Palmaria palmata and Ulva lactuca for use in a fully recirculated cold-seawater naturalistic exhibit: effect of high NO3 and PO4 concentrations and temperature on growth and nutrient uptake vol.30, pp.2, 2018, https://doi.org/10.1007/s10811-017-1333-x
  12. Recent developments in aquaculture of Palmaria palmata (Linnaeus) (Weber & Mohr 1805): cultivation and uses vol.11, pp.1, 2019, https://doi.org/10.1111/raq.12224
  13. Growth and nutrient bioextraction of Gracilaria chorda, G. vermiculophylla, Ulva prolifera, and U. compressa under hypo- and hyper-osmotic conditions vol.33, pp.4, 2014, https://doi.org/10.4490/algae.2018.33.11.13
  14. Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation vol.58, pp.5, 2019, https://doi.org/10.1080/00318884.2019.1622920
  15. The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value vol.8, pp.9, 2014, https://doi.org/10.3390/antiox8090406
  16. Phosphate and Nitrate Uptake Dynamics in Palmaria palmata (Rhodophyceae): Ecological and Physiological Aspects of Nutrient Availability vol.56, pp.5, 2014, https://doi.org/10.1111/jpy.13018