DOI QR코드

DOI QR Code

An Image Denoising Algorithm for the Mobile Phone Cameras

스마트폰 카메라를 위한 영상 잡음 제거 알고리즘

  • 김성운 (부경대학교 정보통신공학과)
  • Received : 2014.03.13
  • Accepted : 2014.05.15
  • Published : 2014.05.31

Abstract

In this study we propose an image denoising algorithm appropriate for mobile smart phone equipped with limited computing ability, which has better performance and at the same time comparable quality comparing with previous studies. The proposed image denoising algorithm for mobile smart phone cameras in low level light environment reduces computational complexity and also prevents edge smoothing by extracting just Gaussian noises from the noisy input image. According to the experiment result, we verified that our algorithm has much better PSNR value than methods applying mean filter or median filter. Also the result image from our algorithm has better clear quality since it preserves edges while smoothing input image. Moreover, the suggested algorithm reduces computational complexity about 52% compared to the method applying original Laplacian mask computation, and we verified that our algorithm has good denoising quality by implementing the algorithm in Android smart phone.

본 연구에서는 스마트폰의 제한된 연산 환경에 적합한 영상 잡음 제거 알고리즘을 개발하여 기존의 연구들과 비교할 시에 스마트폰에서 보다 빠르게 영상 후처리 결과물을 얻고, 품질적인 면에서도 비교할 만한 수준의 영상을 얻는 앱 환경에서 실용적인 알고리즘을 제안한다. 제안된 저조도 환경에서 스마트폰 카메라를 위한 영상잡음 제거 알고리즘은 영상획득 과정에서 발생한 가우시안 잡음만 찾아내어 제거함으로써 영상 복원과정에서 발생하는 연산량을 감축하면서 윤곽선의 블러링 현상을 방지한다. 실험 결과에 의하면 기존의 평균필터와 메디언 필터 적용 기법들에 비해 훨씬 양호한 PSNR 값을 가짐을 보였다. 그리고 영상 내 윤곽선의 흐려짐을 방지하여 기존의 방법들에 의한 결과들보다 선명한 영상 품질을 가지며, 또한 기존의 라플라시안 마스크 연산적용에 비해 연산량을 약 52% 감소시킴으로서 안드로이드 기반의 스마트폰 카메라 앱으로 구현 및 적용했을 때도 복원된 영상이 원 영상에 훨씬 근접하는 영상복원 성능을 가짐을 확인하였다.

Keywords

References

  1. K.-I. Kim, S.-H. Han, and J.-S. Park,"A Distortion Correction Method of Wide-Angle Camera Images through the Estimation and Validation of a Camera Model," J. of the Korea Institute of Electronic Communication Sciences, vol 8, no. 12, 2013, pp. 1923-1932. https://doi.org/10.13067/JKIECS.2013.8.11.1923
  2. J. Park, H. Kim, and Y. Yu,"Video Based Fire Detection Algorithm using Gaussian Mixture Model," J. of the Korea Institute of Electronic Communication Sciences, vol 2, no. 2, 2011, pp. 206-211.
  3. J.-S. Park, J.-K. Song, and B.-Y. Yoon, "Gaussian Mixture Model Based Smoke Detection Algorithm Robust to Lights Variations," J. of the Korea Institute of Electronic Communication Sciences, vol 7, no. 4, 2012, pp. 733-739.
  4. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing using MATLAB. 2nd edition, McGrowHill, 2011.
  5. R. C. Gonzalez and R. E. Woods, Digital image processing. Prentice Hall, 3rd edition, 2008.
  6. G. Yinyu and N.-H. Kim, "The modified mean filter to remove AWGN," J. of the Korea Institute of Maritime Information & Communication Sciences, vol. 15, issue 5, 2011, pp. 1177-1182. https://doi.org/10.6109/jkiice.2011.15.5.1177
  7. T. Huang, G. Yang, and G. Tang, "A fast two-dimensional median filtering algorithm," IEEE Trans. Acoust., Speech, Signal Processing, vol. 27, no. 1, 1979, pp. 13-18. https://doi.org/10.1109/TASSP.1979.1163188
  8. A. R. Smith, "Color Gamut Transform Pairs," ACM SIGGRAPH Proc. of the 5th annual conf. on Computer graphics and interactive techniques, 1978, pp. 12-19.
  9. P. J. Burt, "The Laplacian Pyramid as a Compact Image Code," IEEE Trans. Communications, vol. COM-3l, no. 4, 1983, 532-540.
  10. S. Winkler and P. Mohandas, "The Evolution of Video Quality Measurement: From PSNR to Hybrid Metrics," IEEE Trans. Broadcasting, vol. 54, issue 3, 2008, pp. 660-668. https://doi.org/10.1109/TBC.2008.2000733
  11. M.-R. Gu and D.-S. Kang, "A study on modified gaussian filter using noise estimation," 2010 Korean Institute of Information Technology Summer Conf., 2010, pp. 67-69.
  12. D. Wackerly, W. Mendenhall, and R. L. Scheaffer, Mathematical Statistics with Applications. Thomson Learning Inc. 7th edition, 2007.

Cited by

  1. Effective Noise Reduction using STFT-based Content Analysis vol.52, pp.4, 2015, https://doi.org/10.5573/ieie.2015.52.4.145