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Abstract. In this paper, we introduce S-metric spaces and give their some properties.
Also we present a common fixed point theorem for multivalued maps on complete S-metric
spaces. The single valued case and an illustrative example are given.

1. Introduction

In the present paper, we introduce the concept of S-metric spaces and give some
properties of them. Then a common fixed point theorem for two multivalued mappings
on complete S-metric spaces is given. In addition, we give an illustrative example for the
single valued case.

We begin with the following definition.

Definition 1.1. Let X be a nonempty set. An S-metric on X is a function S : X3 →
[0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,

1. S(x, y, z) ≥ 0,

2. S(x, y, z) = 0 if and only if x = y = z,
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3. S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

1. Let X = Rn and || · || a norm on X, then S(x, y, z) = ||y + z − 2x||+ ||y − z|| is an
S-metric on X.

2. Let X = Rn and || · || a norm on X, then S(x, y, z) = ||x − z|| + ||y − z|| is an
S-metric on X.

3. Let X be a nonempty set, d is ordinary metric on X, then S(x, y, z) = d(x, z) +
d(y, z) is an S-metric on X.

Lemma 1.2. In an S-metric space, we have S(x, x, y) = S(y, y, x).

Proof. By third condition of S-metric, we have

(1.1) S(x, x, y) ≤ S(x, x, x) + S(x, x, x) + S(y, y, x) = S(y, y, x)

and similarly

(1.2) S(y, y, x) ≤ S(y, y, y) + S(y, y, y) + S(x, x, y) = S(x, x, y).

Hence by (1.1) and (1.2), we get S(x, x, y) = S(y, y, x).

Definition 1.3. Let (X,S) be an S-metric space. For r > 0 and x ∈ X we define the open
ball BS(x, r) and closed ball BS [x, r] with center x and radius r as follows respectively:

BS(x, r) = {y ∈ X : S(y, y, x) < r},

BS [x, r] = {y ∈ X : S(y, y, x) ≤ r}.

Example 1.4. Let X = R. Denote S(x, y, z) = |y + z − 2x| + |y − z| for all x, y, z ∈ R.
Thus

BS(1, 2) = {y ∈ R : S(y, y, 1) < 2} = {y ∈ R : |y − 1| < 1}
= {y ∈ R : 0 < y < 2} = (0, 2).

Definition 1.5. Let (X,S) be an S-metric space and A ⊂ X.

1. If for every x ∈ A there exists r > 0 such that BS(x, r) ⊂ A, then the subset A is
called open subset of X.

2. Subset A of X is said to be S-bounded if there exists r > 0 such that S(x, x, y) < r
for all x, y ∈ A.

3. A sequence {xn} in X converges to x if and only if S(xn, xn, x) → 0 as n → ∞.
That is for each ε > 0 there exists n0 ∈ N such that

∀ n ≥ n0 =⇒ S(xn, xn, x) < ε

and we denote by limn→∞ xn = x.
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4. Sequence {xn} in X is called a Cauchy sequence if for each ε > 0 , there exists
n0 ∈ N such that S(xn, xn, xm) < ε for each n,m ≥ n0.

5. The S-metric space (X,S) is said to be complete if every Cauchy sequence is con-
vergent.

6. Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0 such that
BS(x, r) ⊂ A. Then τ is a topology on X (induced by the S-metric S).

Lemma 1.6. Let (X,S) be an S-metric space. If r > 0 and x ∈ X, then the ball BS(x, r)
is open subset of X.

Proof. Let y ∈ BS(x, r), hence S(y, y, x) < r. If set δ = S(x, x, y) and r′ = r−δ
2

then we
prove that BS(y, r

′) ⊆ BS(x, r). Let z ∈ BS(y, r
′), then S(z, z, y) < r′. By third condition

of S-metric we have

S(z, z, x) ≤ S(z, z, y) + S(z, z, y) + S(x, x, y) < 2r′ + δ = r

Hence BS(y, r
′) ⊆ BS(x, r). That is the ball BS(x, r) is a open subset of X.

Lemma 1.7. Let (X,S) be an S-metric space. If sequence {xn} in X converges to x, then
x is unique.

Proof. Let {xn} converges to x and y, then for each ε > 0 there exist n1, n2 ∈ N such that

∀ n ≥ n1 =⇒ S(xn, xn, x) <
ε

4

and
∀ n ≥ n2 =⇒ S(xn, xn, y) <

ε

2
.

If set n0 = max{n1, n2}, then for every n ≥ n0 by third condition S-metric we have:

S(x, x, y) ≤ 2S(x, x, xn) + S(y, y, xn) <
ε

2
+

ε

2
= ε.

Hence S(x, x, y) = 0 so x = y.

Lemma 1.8. Let (X,S) be an S-metric space. If sequence {xn} in X is converges to x,
then {xn} is a Cauchy sequence.

Proof. Since limn→∞ xn = x then for each ε > 0 there exists n1, n2 ∈ N such that

n ≥ n1 ⇒ S(xn, xn, x) <
ε

4

and
m ≥ n2 ⇒ S(xm, xm, x) <

ε

2
.

If set n0 = max{n1, n2}, then for every n,m ≥ n0 by third condition of S-metric we have:

S(xn, xn, xm) ≤ 2S(xn, xn, x) + S(xm, xm, x) <
ε

2
+

ε

2
= ε.

Hence {xn} is a Cauchy sequence.

Lemma 1.9. Let (X,S) be an S- metric space. If there exist sequences {xn} and {yn}
such that limn→∞ xn = x and limn→∞ yn = y, then

lim
n→∞

S(xn, xn, yn) = S(x, x, y).
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Proof. Since limn→∞ xn = x and limn→∞ yn = y, then for each ε > 0 there exist
n1, n2 ∈ N such that

∀ n ≥ n1 ⇒ S(xn, xn, x) <
ε

4

and
∀ n ≥ n2 ⇒ S(yn, yn, y) <

ε

4
.

If set n0 = max{n1, n2}, then for every n ≥ n0 by third condition of S-metric we have:

S(xn, xn, yn) ≤ 2S(xn, xn, x) + S(yn, yn, x)

≤ 2S(xn, xn, x) + 2S(yn, yn, y) + S(x, x, y)

<
ε

2
+

ε

2
+ S(x, x, y) = ε+ S(x, x, y).

Hence we have:

(1.3) S(xn, xn, yn)− S(x, x, y) < ε.

On the other hand, we have

S(x, x, y) ≤ 2S(x, x, xn) + S(y, y, xn)

≤ 2S(x, x, xn) + 2S(y, y, yn) + S(xn, xn, yn)

<
ε

2
+

ε

2
+ S(xn, xn, yn) = ε+ S(xn, xn, yn),

that is

(1.4) S(x, x, y)− S(xn, xn, yn) < ε.

Therefore by relations (1.3) and (1.4) we have |S(xn, xn, yn)− S(x, x, y)| < ε, that is

lim
n→∞

S(xn, xn, yn) = S(x, x, y).

Let (X,S) be an S-metric space, C(X) denotes the family of all nonempty closed
subsets of X. For A and B two nonempty subsets of X we define;

dist(x,A) = inf
a∈A

{S(x, x, a)}

and
S(A,A,B) = sup

a∈A, b∈B
{S(a, a, b)}.

By the definition of dist(x,A), it is clear that dist(x,A) = 0 ⇔ x ∈ A.

2. Implicit Relations

Implicit relations on metric spaces have been used in many articles. For examples, [1],
[2], [3], [4], [5], [6], [7], [8]. Let R+ be the set of nonnegative real numbers and let T be the
set of all functions T : R6

+ → R satisfying the following conditions:
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T0 : T (lim inf
n→∞

pn) ≤ lim inf
n→∞

T (pn) for any pn ∈ R6
+, where lim inf

n→∞
pn means component-wise

lim inf.

T1 : T (t1, ..., t6) is nonincreasing in t2, ..., t6.

T2 : there exists a continuous strictly increasing function ϕ : R+ → R+ with ϕ(t) < t for
t > 0 and ε > 0 such that the inequalities

u ≤ w + ε

and

T (w, v, v, u, 2u+ v, 0) ≤ 0 or T (w, v, u, v, 0, 2u+ v) ≤ 0

implies w ≤ ϕ(v).

T3 : T (w, 0, v, 0, 0, v) ≤ 0 and T (w, 0, 0, v, v, 0) ≤ 0 implies w ≤ ϕ(v), where ϕ is the
function in T2.

Example 2.1. T (t1, ..., t6) = t1 − f(max{t2, t3, t4, 1
3
(t5 + t6)}), where f : R+ → R+

continuous strictly increasing function with f(t) < t for t > 0.

T0 and T1 : Obviously.

T2 : Let u > 0, then choose ε > 0 so that f(u)+ε < u (this is possible since f(u) < u).
Now let u ≤ w + ε and T (w, v, v, u, 2u + v, 0) = w − f(max{u, v}) ≤ 0. If u ≥ v, then
u ≤ w+ ε ≤ f(u)+ ε < u, a contradiction. Thus u < v and w ≤ f(v). Similarly, u ≤ w+ ε
and T (w, v, u, v, 0, 2u + v) ≤ 0 imply w ≤ f(v). If u = 0, then w ≤ f(v). Thus T2 is
satisfied with ϕ = f.

T3 : T (w, 0, v, 0, 0, v) = T (w, 0, 0, v, v, 0) = w − f(v) ≤ 0 ⇒ w ≤ f(v) = ϕ(v).

3. Fixed Point Theory

Our main result for fixed point theory of this work as follows.

Theorem 3.1. Let (X,S) be a complete S-metric space, x0 ∈ X, r > 0 with F,G :
BS [x0, r] → C(X). Suppose, for all x, y ∈ BS [x0, r] sets Fx,Gy are bounded and

(3.1) T (S(Fx, Fx,Gy), S(x, x, y), dist(x, Fx), dist(y,Gy), dist(x,Gy), dist(y, Fx)) ≤ 0

where T ∈ T. Also assume the following conditions are satisfied:

(3.2) dist(x0, Fx0) <
r − ϕ(r)

2

and

(3.3)

∞∑
i=1

ϕi

(
r − ϕ(r)

2

)
≤ ϕ(r)

2

where ϕ is the function in T2. Then there exists x ∈ BS [x0, r] with x ∈ Fx and x ∈ Gx.

Proof. From (3.2) we can choose x1 ∈ Fx0 with

(3.4) S(x0, x0, x1) <
r − ϕ(r)

2
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Hence S(x1, x1, x0) < r so x1 ∈ BS [x0, r]. Since ϕ is strictly increasing by (3.4) we can
choose ε > 0 such that

(3.5) ϕ(S(x0, x0, x1)) + ε < ϕ

(
r − ϕ(r)

2

)
.

On the other hand, for this ε there is x2 ∈ Gx1 so that

(3.6) S(x1, x1, x2) ≤ dist(x1, Gx1) + ε ≤ S(Fx0, Fx0, Gx1) + ε.

Now since x0, x1 ∈ BS [x0, r] we can use the inequality (3.1) to obtain

T (S(Fx0, Fx0, Gx1), S(x0, x0, x1), dist(x0, Fx0), dist(x1, Gx1),

dist(x0, Gx1), dist(x1, Fx0)) ≤ 0.

From T1 we have

T (S(Fx0, Fx0, Gx1), S(x0, x0, x1), S(x0, x0, x1), S(x1, x1, x2), S(x0, x0, x2), 0) ≤ 0,

that is
T (w, v, v, u, 2u+ v, 0) ≤ 0,

where w = S(Fx0, Fx0, Gx1), v = S(x0, x0, x1) and u = S(x1, x1, x2). Therefore, from T2,

S(Fx0, Fx0, Gx1) ≤ ϕ(S(x0, x0, x1))

and (3.6) yields
S(x1, x1, x2) ≤ ϕ(S(x0, x0, x1)) + ε.

Thus from (3.5) we have:

(3.7) S(x1, x1, x2) < ϕ

(
r − ϕ(r)

2

)
.

Now by (3.3), (3.4), (3.7) and third condition of S-metric have:

S(x2, x2, x0) = S(x0, x0, x2) ≤ 2S(x0, x0, x1) + S(x1, x1, x2)

< r − ϕ(r) + ϕ

(
r − ϕ(r)

2

)
< r − ϕ(r) + 2

∞∑
i=1

ϕi

(
r − ϕ(r)

2

)
≤ r

so x2 ∈ BS [x0, r]. Again by (3.7) and strictly increasing ϕ there is δ > 0 so that

(3.8) ϕ(S(x1, x1, x2)) + δ < ϕ2

(
r − ϕ(r)

2

)
,

also for this δ > 0 there is x3 ∈ Fx2 so that

(3.9) S(x2, x2, x3) ≤ dist(x2, Fx2) + δ ≤ S(Gx1, Gx1, Fx2) + δ.

As above, since x1, x2 ∈ BS [x0, r] we can use the inequality (3.1) to obtain

T (S(Fx2, Fx2, Gx1), S(x2, x2, x1), dist(x2, Fx2),
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dist(x1, Gx1), dist(x2, Gx1), dist(x1, Fx2)) ≤ 0

and so from T1 we have

T (S(Fx2, Fx2, Gx1), S(x2, x2, x1), S(x2, x2, x3), S(x1, x1, x2), 0, S(x1, x1, x3)) ≤ 0

that is
T (w, v, u, v, 0, 2u+ v) ≤ 0,

where w = S(Fx2, Fx2, Gx1), v = S(x1, x1, x2) and u = S(x2, x2, x3). Therefore from T2,

w ≤ ϕ(v)

that is
S(Fx2, Fx2, Gx1) ≤ ϕ(S(x1, x1, x2))

and so (3.9) gives
S(x2, x2, x3) ≤ ϕ(S(x1, x1, x2)) + δ.

Thus from (3.8) we have

(3.10) S(x2, x2, x3) < ϕ2

(
r − ϕ(r)

2

)
.

Now (3.3), (3.4), (3.7), (3.10) and third condition of S-metric implies:

S(x3, x3, x0) = S(x0, x0, x3) ≤ 2S(x0, x0, x1) + 2S(x1, x1, x2) + S(x2, x2, x3)

< r − ϕ(r) + 2ϕ

(
r − ϕ(r)

2

)
+ ϕ2

(
r − ϕ(r)

2

)
≤ r − ϕ(r) + 2

∞∑
i=1

ϕi

(
r − ϕ(r)

2

)
≤ r

Thus x3 ∈ BS [x0, r].
Continuing this way we can obtain a sequence {xn} ⊆ BS [x0, r] such that x2n+2 ∈

Gx2n+1 and x2n+1 ∈ Fx2n for n ≥ 0 and

S(xn, xn, xn+1) < ϕn

(
r − ϕ(r)

2

)
.

Next we show that {xn} is a Cauchy sequence. Notice by (3.3) and above inequality for
each n,m ∈ N with m > n we have:

S(xn, xn, xm) ≤ 2

m−2∑
i=n

S(xi, xi, xi+1) + S(xm−1, xm−1, xm)

≤ 2

m−1∑
i=n

S(xi, xi, xi+1) < 2

m−1∑
i=n

ϕi

(
r − ϕ(r)

2

)

≤ 2

∞∑
i=n

ϕi

(
r − ϕ(r)

2

)
so (3.3) guarantees that {xn} is a Cauchy sequence. Thus there exists x ∈ BS [x0, r] with
xn → x. It remains to show x ∈ Fx and x ∈ Gx. For n even (since xn, x ∈ BS [x0, r]) we
can use the inequality (3.1), we have

T (S(Fx, Fx,Gxn−1), S(x, x, xn−1), dist(x, Fx), dist(xn−1, Gxn−1),
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dist(x,Gxn−1), dist(xn−1, Fx)) ≤ 0.

Now taking limit inferior as n → ∞ (using T0) we have (notice dist(x,Gxn−1) ≤
S(x, x, xn) → 0, and also dist(xn−1, Gxn−1) ≤ S(xn−1, xn−1, xn) → 0)

T (lim inf
n→∞

S(Fx, Fx,Gxn−1), 0, dist(x, Fx), 0, 0, dist(x, Fx)) ≤ 0.

From T3 we have
lim inf
n→∞

S(Fx, Fx,Gxn−1) ≤ ϕ(dist(x, Fx)).

Now

dist(x, Fx) ≤ 2S(x, x, xn) + dist(xn, Fx) ≤ 2S(x, x, xn) + S(Gxn−1, Gxn−1, Fx)

and so
dist(x, Fx) ≤ 0 + lim inf

n→∞
S(Fx, Fx,Gxn−1) ≤ ϕ(dist(x, Fx)).

Thus dist(x, Fx) = 0 since ϕ(t) < t for t > 0, so x ∈ Fx = Fx.
For n odd ,

dist(x,Gx) ≤ S(x, x, xn) + dist(xn, Gx) ≤ S(x, x, xn) + S(Fxn−1, Fxn−1, Gx),

and as above we obtain dist(x,Gx) = 0, so x ∈ Gx.

Now we give some corollaries.

Corollary 3.2. Let (X,S) be a complete S-metric space, x0 ∈ X, r > 0 with F,G :
BS [x0, r] → C(X). Suppose, for all x, y ∈ BS [x0, r] sets Fx,Gy are bounded and

S(Fx, Fx,Gy) ≤ kmax{S(x, x, y), dist(x, Fx), dist(y,Gy),
dist(x,Gy)

3
,
dist(y, Fx)

3
}

where 0 < k < 1. Also assume the following condition is satisfied:

dist(x0, Fx0) <
1− k

2
r.

Then there exists x ∈ BS [x0, r] with x ∈ Fx and x ∈ Gx.

Proof. By Theorem 3.1 , it is enough to set T (t1, t2, ..., t6) = t1 − kmax{t2, t3, t4, t5
3
, t6

3
}.

In this case, ϕ(t) = kt and

∞∑
i=1

ϕi

(
r − ϕ(r)

2

)
=

kr

2
=

ϕ(r)

2
.

Corollary 3.3. Let (X,S) be a complete S-metric space, x0 ∈ X, r > 0 with F,G :
BS [x0, r] → X. Suppose for all x, y ∈ BS [x0, r],

S(Fx, Fx,Gy) ≤ kmax{S(x, x, y), S(x, x, Fx), S(y, y,Gy),
S(x, x,Gy)

3
,
S(y, y, Fx)

3
}

where 0 < k < 1. Also assume the following condition is satisfied:

S(x0, x0, Fx0) <
1− k

2
r.



Some Properties of S-metric Spaces and Fixed Point Results 121

Then there exists a unique x ∈ BS [x0, r] with Fx = Gx = x.

Proof. By Corollary 3.2 , there exists an x ∈ X such that Fx = Gx = x. It is enough
prove that x is unique.

Let y be another common fixed point of F and G, that is y = Fy = Gy, then we have

S(x, x, y) = S(Fx, Fx,Gy) ≤ kmax{S(x, x, y), S(x, x, x), S(y, y, y)}
= kS(x, x, y),

which is a contradiction. Therefore F andG have a unique common fixed point in BS [x0, r].

Corollary 3.4. Let (X,S) be a complete S-metric space, x0 ∈ X, r > 0 with F :
BS [x0, r] → X. Suppose for all x, y ∈ BS [x0, r],

S(Fx, Fx, Fy) ≤ kmax{S(x, x, y), S(x, x, Fx), S(y, y, Fy),
S(x, x, Fy)

3
,
S(y, y, Fx)

3
}

where 0 < k < 1. Also assume the following condition is satisfied:

S(x0, x0, Fx0) <
1− k

2
r.

Then there exists a unique x ∈ BS [x0, r] with Fx = x.

Now we give an example.

Example 3.5. Let X = R and S(x, y, z) = |x− z| + |y − z| .Then (X,S) is a complete
S-metric space. Let x0 = 1 and r = 6, then

BS [x0, r] = BS [1, 6]

= {y ∈ X : S(y, y, x) ≤ 6}
= [−2, 4].

Now let F : BS [x0, r] → X, Fx = x
2
and let k = 1

2
, then

S(x0, x0, Fx0) = S(1, 1,
1

2
) = 1 <

3

2
=

1− k

2
r.

Also, for all x, y ∈ BS [x0, r], we have

S(Fx, Fx, Fy) = 2 |Fx− Fy|
= |x− y|

=
1

2
(2 |x− y|)

=
1

2
S(x, x, y)

≤ 1

2
max{S(x, x, y), S(x, x, Fx), S(y, y, Fy),

S(x, x, Fy)

3
,
S(y, y, Fx)

3
}.

Therefore all conditions of Corollary 3.4 are satisfied, thus F has a unique fixed point in
BS [x0, r] = [−2, 4].
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